On Physics-Informed Neural Networks and DeepONet for Vascular Flow Simulations in Aortic Aneurysms

Oscar L. Cruz González, Valérie Deplano, Badih Ghattas

Research Funding Post-doctoral fellowship funded by A*MIDEX Host Laboratories IRPHE (UMR7342, Bio-mechanics team) AMSE (UMR7316, Econometrics and Statistics team)

Motivations

Modeling of cardiovascular diseases

Why explore new data assimilation algorithms?

4D MRI

- Limited accuracy in identify hemodynamics.
- Challenges in obtaining patient-specific flow boundary conditions.

OFD simulations

• Computational demanding and time-consuming.

• AI for Engineering

Outline

Aim of this work

- Apply PINNs and (PI-)DeepONets for predicting vascular flow simulations in the context of a 3D AAA idealized model.
- Assess the accuracy of predictions and check improvements in computational efficiency over classical CFD simulations.
- Provide a benchmark study that mimics clinical applications involving patient-specific inflow conditions.

- Background: PINNs and (PI-)DeepONets
- Formulation of the 3D Abdominal Aortic Aneurysm (AAA) Idealized Model
- Adapting PINNs and (PI-)DeepONets for AAA Simulations
- 4 Results

PINNs

PDEs – illustrative example

$$\begin{split} \mathfrak{N}[u(\boldsymbol{x},t)] &= 0, \quad \boldsymbol{x} \in \mathscr{B}, \quad t \in (0,T], \quad (1a) \\ \mathfrak{B}[u(\boldsymbol{x},t)] &= 0, \quad \boldsymbol{x} \in \partial \mathscr{B}, \quad t \in (0,T], \quad (1b) \\ u(\boldsymbol{x},0) &= u_0(\boldsymbol{x}), \quad \boldsymbol{x} \in \overline{\mathscr{B}}. \end{split}$$

Total Loss functions

$$\mathcal{L}(\theta) = \mathcal{L}_{phy}(\theta) + \mathcal{L}_{bc}(\theta) + \mathcal{L}_{ic}(\theta) + \mathcal{L}_{data}(\theta).$$
(2)
$$\mathcal{L}_{data}(\theta) = \frac{1}{P_{data}} \sum_{s=1} \left| \hat{u}_{\theta}(x_{s}^{tdata}) - \hat{u}_{s}^{tdata} \right|$$

$$\mathcal{L}_{data}(\theta) = \frac{1}{P_{data}} \sum_{s=1} \left| \hat{u}_{\theta}(x_{s}^{tdata}) - \hat{u}_{t}^{tdata} \right|$$

$$\mathcal{L}_{data}(\theta) = \frac{1}{P_{data}} \sum_{s=1} \left| \hat{u}_{\theta}(x_{s}^{tdata}) - \hat{u}_{t}^{tdata} \right|$$

$$\mathcal{L}_{total}(\theta) = \frac{1}{P_{data}} \sum_{s=1} \left| \hat{u}_{\theta}(x_{s}^{tdata}) - \hat{u}_{t}^{tdata} \right|$$

$$\mathcal{L}_{total}(\theta) = \frac{1}{P_{data}} \sum_{s=1} \left| \hat{u}_{\theta}(x_{s}^{tdata}) - \hat{u}_{t}^{tdata} - \hat{u}_{t}^{tdata} \right|$$

$$\mathcal{L}_{total}(\theta) = \frac{1}{P_{data}} \sum_{s=1} \left| \hat{u}_{\theta}(x_{s}^{tdata}) - \hat{u}_{t}^{tdata} - \hat{u}_{t}^$$

$$\Sigma_{\rm phy}(\theta) = \frac{1}{P_{\rm phy}} \sum_{j=1}^{P_{\rm phy}} \left| \mathfrak{N}[\hat{u}_{\theta}(\mathbf{x}_j^{\rm \{phy\}}, t_j^{\rm \{phy\}})] \right|^2,$$
(3)

$$\mathcal{L}_{bc}(\theta) = \frac{1}{P_{bc}} \sum_{k=1}^{F_{bc}} \left| \mathfrak{B}[\hat{u}_{\theta}(\mathbf{x}_{k}^{\{bc\}}, t_{k}^{\{bc\}})] \right|^{2},$$
(4)

$$\mathcal{L}_{ic}(\theta) = \frac{1}{P_{ic}} \sum_{l=1}^{P_{ic}} \left| \hat{u}_{\theta}(\mathbf{x}_{l}^{\{ic\}}, 0) - u_{0}(\mathbf{x}_{l}^{\{ic\}}) \right|^{2},$$
(5)

$$\mathcal{L}_{data}(\theta) = \frac{1}{P_{data}} \sum_{s=1}^{P_{data}} \left| \hat{u}_{\theta}(\mathbf{x}_{s}^{\{data\}}, t_{s}^{\{data\}}) - u(\mathbf{x}_{s}^{\{data\}}, t_{s}^{\{data\}}) \right|^{2}.$$
 (6)

 Raissi et al. (2017). Preprint Part I.
 Raissi et al. (2017). Preprint Part II.
 Raissi et al. (2019). Journal of Computational Physics.

Oscar L. Cruz González

Operator Learning

Why?

- Some parameters of a given PDE system are allowed to change in a given range, e.g., source term, domain shape, initial and boundary conditions, coefficients, etc.
- Classical PINNs requires retraining when this occurs, which is disadvantageous and computationally expensive.

Parametric PDEs

$$\begin{split} \mathfrak{N}[u^{(i)}(\boldsymbol{x},t);f^{(i)}(\boldsymbol{x})] &= 0, \quad \boldsymbol{x} \in \mathscr{B}, \quad t \in (0,\,T], \quad (\texttt{7a})\\ \mathfrak{B}[u^{(i)}(\boldsymbol{x},t)] &= 0, \quad \boldsymbol{x} \in \partial \mathscr{B}, \quad t \in (0,\,T], \quad (\texttt{7b})\\ u^{(i)}(\boldsymbol{x},0) &= u_0(\boldsymbol{x}), \quad \boldsymbol{x} \in \overline{\mathscr{B}}. \quad (\texttt{7c}) \end{split}$$

- Goal: To learn an operator $\mathfrak{G}: \mathscr{X} \mapsto \mathscr{Y}$ such that for any input function $f^{(i)}$, we can compute the corresponding output function $u^{(i)} = \mathfrak{G}(f^{(i)})$.
- For all points (x, t) in the domain of the solution, the following relationship holds true, $u^{(i)}(x, t) = \mathfrak{G}(f^{(i)})(x, t).$

Loss function:

$$\mathcal{L}(\theta) = \frac{1}{NP} \sum_{i=1}^{N} \sum_{j=1}^{P} \left| \hat{\mathfrak{G}}_{\theta}(f^{(i)})(\mathbf{x}_{j}^{(i)}, t_{j}^{(i)}) - \mathfrak{G}(f^{(i)})(\mathbf{x}_{j}^{(i)}, t_{j}^{(i)}) \right|^{2},$$
(8)

Su, L., Jin, P., and Karniadakis, G. E. (2021). DeepONet.

Deep Operator Networks (DeepONets / PI-DeepONets)

The Authors in \mathcal{O} Lu, L.et al. (2021). DeepONet. used the Universal Approximation Theorem for Operator and proposed an expression to approximate $\mathfrak{G}(f^{(i)})(\mathbf{x}_i^{(i)}, t_i^{(i)})$ as follows,

$$\hat{\mathfrak{G}}_{\theta}(f^{(i)})(\mathbf{x}_{j}^{(i)}, t_{j}^{(i)}) := \sum_{k=1}^{q} \underbrace{\beta_{k}\left(f^{(i)}(\tilde{\mathbf{x}}_{1}), f^{(i)}(\tilde{\mathbf{x}}_{2}), \dots, f^{(i)}(\tilde{\mathbf{x}}_{m})\right)}_{Branch} \underbrace{\tau_{k}(\mathbf{x}_{j}^{(i)}, t_{j}^{(i)})}_{Trunk}, \tag{9}$$

where the solution map is represented by an unstacked deep learning architecture called DeepONet.

Formulation of AAA idealized model - steady flow

$\mu_f \; [kg/(ms)]$	$ ho_f [kg/m^3]$	V [m/s]	R [m]	specimen length [m]
0.00399	1060	[0.04, 0.05, 0.06, 0.08, 0.1, 0.12, 0.13, 0.15]	0.010065	0.26009

Table: NSE parameters.

Ground trust - Dataset preparation

Training set – selective data usage

Inlet^*	$(x_1, x_2, x_3, v_1, v_2, v_3, \text{NaN})$
$Outlet^*$	$(x_1, x_2, x_3, v_1, v_2, v_3, \mathrm{NaN})$
Wall^*	$(x_1, x_2, x_3, 0, 0, 0, \mathrm{NaN})$
$Volume^*$	$(x_1, x_2, x_3, \operatorname{NaN}, \operatorname{NaN}, \operatorname{NaN}, \operatorname{NaN})$
Volume	$(x_1, x_2, x_3, v_1, v_2, v_3, p)$

Data \subset

PINNs architecture and loss functions

Total loss functions

$$\begin{split} \mathcal{L}_{\text{DeepNN}}(\theta) &= \mathcal{L}_{\text{data}}(\theta) + \mathcal{L}_{\text{inlet}}(\theta) \\ &+ \mathcal{L}_{\text{outlet}}(\theta) + \mathcal{L}_{\text{wall}}(\theta), \qquad (12a) \\ \mathcal{L}_{\text{PINN}}(\theta) &= \mathcal{L}_{\text{data}}(\theta) + \mathcal{L}_{\text{inlet}}(\theta) \\ &+ \mathcal{L}_{\text{outlet}}(\theta) + \mathcal{L}_{\text{wall}}(\theta) + \mathcal{L}_{\text{phy}}(\theta). \quad (12b) \end{split}$$

$$\mathcal{L}_{data}(\theta) = \frac{1}{P_{data}} \sum_{j=1}^{P_{data}} \left(\left\| \hat{\boldsymbol{v}}_{\theta}(\boldsymbol{x}_{j}^{\{data\}}) - \boldsymbol{v}(\boldsymbol{x}_{j}^{\{data\}}) \right\|^{2} + \left\| \hat{p}_{\theta}(\boldsymbol{x}_{j}^{\{data\}}) - \boldsymbol{p}(\boldsymbol{x}_{j}^{\{data\}}) \right\|^{2} \right),$$
(13a)

$$\mathcal{L}_{\text{inlet}}(\theta) = \frac{1}{P_{\text{inlet}}} \sum_{k=1}^{P_{\text{inlet}}} \left\| \hat{\boldsymbol{v}}_{\theta}(\boldsymbol{x}_{k}^{\{\text{inlet}\}}) - \boldsymbol{v}(\boldsymbol{x}_{k}^{\{\text{inlet}\}}) \right\|^{2},$$
(13b)

$$\mathcal{L}_{\text{wall}}(\theta) = \frac{1}{P_{\text{wall}}} \sum_{l=1}^{P_{\text{wall}}} \left\| \hat{\boldsymbol{v}}_{\theta}(\boldsymbol{x}_{l}^{\{\text{wall}\}}) - \boldsymbol{v}(\boldsymbol{x}_{l}^{\{\text{wall}\}}) \right\|^{2},$$
(13c)

$$\mathcal{L}_{\text{outlet}}(\theta) = \frac{1}{P_{\text{outlet}}} \sum_{s=1}^{P_{\text{outlet}}} \left\| \hat{\boldsymbol{v}}_{\theta}(\boldsymbol{x}_{s}^{\{\text{outlet}\}}) - \boldsymbol{v}(\boldsymbol{x}_{s}^{\{\text{outlet}\}}) \right\|^{2}, \quad (13d)$$

$$\mathcal{L}_{\text{phy}}(\theta) = \frac{1}{P_{\text{phy}}} \sum_{r=1}^{N_{\text{phy}}} \left\| \hat{\boldsymbol{e}}_{\theta}(\boldsymbol{x}_{r}^{\{\text{phy}\}}) \right\|^{2}.$$
(13e)

PINNs architecture and loss function

Residual of the governing NSE

$$\hat{oldsymbol{e}}_{ heta} = (\hat{e}_{ heta 1}, \hat{e}_{ heta 2}, \hat{e}_{ heta 3}, \hat{e}_{ heta 4})$$

$$\hat{\mathbf{e}}_{\theta 1} = \rho_{f} \left(\hat{\mathbf{v}}_{\theta 1} \frac{\partial \hat{\mathbf{v}}_{\theta 1}}{\partial \mathbf{x}_{1}} + \hat{\mathbf{v}}_{\theta 2} \frac{\partial \hat{\mathbf{v}}_{\theta 1}}{\partial \mathbf{x}_{2}} + \hat{\mathbf{v}}_{\theta 3} \frac{\partial \hat{\mathbf{v}}_{\theta 1}}{\partial \mathbf{x}_{3}} \right) + \frac{\partial \hat{\mathbf{p}}_{\theta}}{\partial \mathbf{x}_{1}} - \mu_{f} \left(\frac{\partial^{2} \hat{\mathbf{v}}_{\theta 1}}{\partial \mathbf{x}_{1}^{2}} + \frac{\partial^{2} \hat{\mathbf{v}}_{\theta 1}}{\partial \mathbf{x}_{2}^{2}} + \frac{\partial^{2} \hat{\mathbf{v}}_{\theta 3}}{\partial \mathbf{x}_{3}^{2}} \right), \quad (14a)$$

$$\hat{\mathbf{e}}_{\theta 2} = \rho_{f} \left(\hat{\mathbf{v}}_{\theta 1} \frac{\partial \hat{\mathbf{v}}_{\theta 2}}{\partial \mathbf{x}_{1}} + \hat{\mathbf{v}}_{\theta 2} \frac{\partial \hat{\mathbf{v}}_{\theta 2}}{\partial \mathbf{x}_{2}} + \hat{\mathbf{v}}_{\theta 3} \frac{\partial \hat{\mathbf{v}}_{\theta 2}}{\partial \mathbf{x}_{3}} \right) + \frac{\partial \hat{\mathbf{p}}_{\theta}}{\partial \mathbf{x}_{2}} - \mu_{f} \left(\frac{\partial^{2} \hat{\mathbf{v}}_{\theta 2}}{\partial \mathbf{x}_{1}^{2}} + \frac{\partial^{2} \hat{\mathbf{v}}_{\theta 2}}{\partial \mathbf{x}_{2}^{2}} + \frac{\partial^{2} \hat{\mathbf{v}}_{\theta 2}}{\partial \mathbf{x}_{3}^{2}} \right), \quad (14b)$$

$$\hat{\mathbf{e}}_{\theta 3} = \rho_{f} \left(\hat{\mathbf{v}}_{\theta 1} \frac{\partial \hat{\mathbf{v}}_{\theta 3}}{\partial \mathbf{x}_{1}} + \hat{\mathbf{v}}_{\theta 2} \frac{\partial \hat{\mathbf{v}}_{\theta 3}}{\partial \mathbf{x}_{2}} + \hat{\mathbf{v}}_{\theta 3} \frac{\partial \hat{\mathbf{v}}_{\theta 3}}{\partial \mathbf{x}_{3}} \right) + \frac{\partial \hat{\mathbf{p}}_{\theta}}{\partial \mathbf{x}_{3}} - \mu_{f} \left(\frac{\partial^{2} \hat{\mathbf{v}}_{\theta 3}}{\partial \mathbf{x}_{1}^{2}} + \frac{\partial^{2} \hat{\mathbf{v}}_{\theta 3}}{\partial \mathbf{x}_{3}^{2}} \right), \quad (14c)$$

$$\hat{\mathbf{e}}_{\theta 4} = \frac{\partial \hat{\mathbf{v}}_{\theta 1}}{\partial \mathbf{x}_{1}} + \frac{\partial \hat{\mathbf{v}}_{\theta 2}}{\partial \mathbf{x}_{2}} + \frac{\partial \hat{\mathbf{v}}_{\theta 3}}{\partial \mathbf{x}_{3}}. \quad (14d)$$

DeepONet architecture and loss functions

Total loss functions

$$\mathcal{L}_{\mathsf{DeepONet}}(\theta) = \mathcal{L}_{\mathsf{data}}(\theta) + \mathcal{L}_{\mathsf{inlet}}(\theta) + \mathcal{L}_{\mathsf{outlet}}(\theta) + \mathcal{L}_{\mathsf{wall}}(\theta),$$
(15a)

$$\mathcal{L}_{\mathsf{Pl-DeepONet}}(\theta) = \mathcal{L}_{\mathsf{data}}(\theta) + \mathcal{L}_{\mathsf{inlet}}(\theta) + \mathcal{L}_{\mathsf{outlet}}(\theta) + \mathcal{L}_{\mathsf{wall}}(\theta) + \mathcal{L}_{\mathsf{phy}}(\theta).$$
(15b)

 Jin et al. (2022). SIAM Journal on Scientific Computing.
 Wang et al. (2023). Journal of Computational Physics.

Oscar L. Cruz González

DeepONet architecture and loss functions

$$\begin{aligned} \mathcal{L}_{data}(\theta) &= \frac{1}{NP_{data}} \sum_{i=1}^{N} \sum_{j=1}^{P_{data}} \left(\left\| \hat{\mathfrak{G}}_{\theta}^{(\mathbf{v})}(\mathbf{v}_{2}^{\{\text{inlet}\}(i)}, p^{\{\text{outlet}\}(i)})(\mathbf{x}_{j}^{\{\text{data}\}(i)}) - \mathbf{v}(\mathbf{x}_{j}^{\{\text{data}\}(i)}) \right\|^{2} \\ &+ \left| \hat{\mathfrak{G}}_{\theta}^{(p)}(\mathbf{v}_{2}^{\{\text{inlet}\}(i)}, p^{\{\text{outlet}\}(i)})(\mathbf{x}_{j}^{\{\text{data}\}(i)}) - p(\mathbf{x}_{j}^{\{\text{data}\}(i)}) \right|^{2} \right), \end{aligned}$$
(16a)
$$\mathcal{L}_{inlet}(\theta) &= \frac{1}{NP_{inlet}} \sum_{i=1}^{N} \sum_{k=1}^{P_{inlet}} \left\| \hat{\mathfrak{G}}_{\theta}^{(\mathbf{v})}(\mathbf{v}_{2}^{\{\text{inlet}\}(i)}, p^{\{\text{outlet}\}(i)})(\mathbf{x}_{k}^{\{\text{inlet}\}(i)}) - \mathbf{v}(\mathbf{x}_{k}^{\{\text{inlet}\}(i)}) \right\|^{2}, \end{aligned}$$
(16b)
$$\mathcal{L}_{wall}(\theta) &= \frac{1}{NP_{wall}} \sum_{i=1}^{N} \sum_{l=1}^{P_{wall}} \left\| \hat{\mathfrak{G}}_{\theta}^{(\mathbf{v})}(\mathbf{v}_{2}^{\{\text{inlet}\}(i)}, p^{\{\text{outlet}\}(i)})(\mathbf{x}_{k}^{\{\text{wall}\}(i)}) - \mathbf{v}(\mathbf{x}_{l}^{\{\text{wall}\}(i)}) \right\|^{2}, \end{aligned}$$
(16c)
$$\mathcal{L}_{outlet}(\theta) &= \frac{1}{NP_{outlet}} \sum_{i=1}^{N} \sum_{s=1}^{P_{outlet}} \left\| \hat{\mathfrak{G}}_{\theta}^{(\mathbf{v})}(\mathbf{v}_{2}^{\{\text{inlet}\}(i)}, p^{\{\text{outlet}\}(i)})(\mathbf{x}_{s}^{\{\text{outlet}\}(i)}) - \mathbf{v}(\mathbf{x}_{s}^{\{\text{outlet}\}(i)}) \right\|^{2}, \end{aligned}$$
(16d)
$$\mathcal{L}_{phy}(\theta) &= \frac{1}{NP_{phy}} \sum_{i=1}^{N} \sum_{r=1}^{N_{phy}} \left\| \hat{\mathbf{E}}_{\theta}(\mathbf{v}_{2}^{\{\text{inlet}\}(i)}, p^{\{\text{outlet}\}(i)})(\mathbf{x}_{r}^{\{\text{phy}\}(i)}) \right\|^{2}, \end{aligned}$$
(16e)

Oscar L. Cruz González

November 12, 2024 13

13 / 20

DeepONet architecture and loss function

Residual of the governing NSE

$$\hat{\boldsymbol{E}}_{ heta} = (\hat{E}_{ heta 1}, \hat{E}_{ heta 2}, \hat{E}_{ heta 3}, \hat{E}_{ heta 4})$$

$$\begin{split} \hat{E}_{\theta1} &= \rho_f (\hat{\mathfrak{G}}_{\theta}^{(v_1)} \frac{\partial \hat{\mathfrak{G}}_{\theta}^{(v_1)}}{\partial x_1} + \hat{\mathfrak{G}}_{\theta}^{(v_2)} \frac{\partial \hat{\mathfrak{G}}_{\theta}^{(v_1)}}{\partial x_2} + \hat{\mathfrak{G}}_{\theta}^{(v_3)} \frac{\partial \hat{\mathfrak{G}}_{\theta}^{(v_1)}}{\partial x_3}) + \frac{\partial \hat{\mathfrak{G}}_{\theta}^{(p)}}{\partial x_1} - \mu_f (\frac{\partial^2 \hat{\mathfrak{G}}_{\theta}^{(v_1)}}{\partial x_1^2} + \frac{\partial^2 \hat{\mathfrak{G}}_{\theta}^{(v_1)}}{\partial x_2^2} + \frac{\partial^2 \hat{\mathfrak{G}}_{\theta}^{(v_1)}}{\partial x_3^2}), \quad (17a) \\ \hat{E}_{\theta2} &= \rho_f (\hat{\mathfrak{G}}_{\theta}^{(v_1)} \frac{\partial \hat{\mathfrak{G}}_{\theta}^{(v_2)}}{\partial x_1} + \hat{\mathfrak{G}}_{\theta}^{(v_2)} \frac{\partial \hat{\mathfrak{G}}_{\theta}^{(v_2)}}{\partial x_2} + \hat{\mathfrak{G}}_{\theta}^{(v_3)} \frac{\partial \hat{\mathfrak{G}}_{\theta}^{(v_2)}}{\partial x_3}) + \frac{\partial \hat{\mathfrak{G}}_{\theta}^{(p)}}{\partial x_2} - \mu_f (\frac{\partial^2 \hat{\mathfrak{G}}_{\theta}^{(v_2)}}{\partial x_1^2} + \frac{\partial^2 \hat{\mathfrak{G}}_{\theta}^{(v_2)}}{\partial x_2^2} + \frac{\partial^2 \hat{\mathfrak{G}}_{\theta}^{(v_2)}}{\partial x_3^2}), \quad (17b) \\ \hat{E}_{\theta3} &= \rho_f (\hat{\mathfrak{G}}_{\theta}^{(v_1)} \frac{\partial \hat{\mathfrak{G}}_{\theta}^{(v_2)}}{\partial x_1} + \hat{\mathfrak{G}}_{\theta}^{(v_2)} \frac{\partial \hat{\mathfrak{G}}_{\theta}^{(v_3)}}{\partial x_2} + \hat{\mathfrak{G}}_{\theta}^{(v_3)} \frac{\partial \hat{\mathfrak{G}}_{\theta}^{(v_3)}}{\partial x_3}) + \frac{\partial \hat{\mathfrak{G}}_{\theta}^{(p)}}{\partial x_3} - \mu_f (\frac{\partial^2 \hat{\mathfrak{G}}_{\theta}^{(v_2)}}{\partial x_1^2} + \frac{\partial^2 \hat{\mathfrak{G}}_{\theta}^{(v_3)}}{\partial x_3^2}), \quad (17c) \\ \hat{E}_{\theta4} &= \frac{\partial \hat{\mathfrak{G}}_{\theta}^{(v_1)}}{\partial x_1} + \frac{\partial \hat{\mathfrak{G}}_{\theta}^{(v_3)}}{\partial x_2} + \frac{\partial \hat{\mathfrak{G}}_{\theta}^{(v_3)}}{\partial x_3}. \quad (17d) \end{split}$$

Results – AAA simulations via PINNs – DeepNNs Vs PINNs

Models' settings

NN (MLP, Tanh activation, 4 hidden layers, 256 neurons, Xavier normal initialization)

Training (200 000 iterations, 1024 batch size (batch training), Adam optimizer)

Techniques for Enhancing NN

- Dimensionless NSE
- Adaptive sampling within the mesh
- Exponential decay for the learning rate + optimizer scheduler
- Loss balancing (Grad Norm technique)

Dataset			DeepNN		PINN			
V=0.1~m/s		L^2 -relative error on the	test set / com	putational efficiency	L^2 -relative error on the test set / computational efficiency			
Source of data	%	Magnitude of velocity Pressure		Runtime(min)	Magnitude of velocity	Pressure	Runtime(h)	
Cross-section								
5 slices	1.42	1.1881e-01	1.5626e-01	28.30	4.6507e-02	4.8523e-02	2.95	
Longitudinal								
1 slice	1.87	2.7889e-01	7.0684e-01	28.11	4.0500e-02	1.1026e-02	2.95	
Random								
Coord. points	0.3	23253e-02	1.4570e-02	28.84	8.7983e-03	4.7490e-03	2.95	

*Runtime: NVIDIA RTX A6000 GPU with 48 GB of memory.

AAA simulations via PINNs – PINNs without Data

$$\mathcal{L}_{\mathrm{PINN}}(\theta) = \mathcal{L}_{\mathrm{data}}(\theta) + \mathcal{L}_{\mathrm{inlet}}(\theta) + \mathcal{L}_{\mathrm{outlet}}(\theta) + \mathcal{L}_{\mathrm{wall}}(\theta) + \mathcal{L}_{\mathrm{phy}}(\theta).$$

Inlet* $(x_1, x_2, x_3, v_1, v_2, v_3, \text{NaN})$

Outlet* $(x_1, x_2, x_3, v_1, v_2, v_3, \text{NaN})$

Wall* $(x_1, x_2, x_3, 0, 0, 0, \text{NaN})$

 $Volume^*$ (x₁, x₂, x₃, NaN, NaN, NaN, NaN)

- Fourier features embedding
- Modified MLP
- Random weight factorization (RWF)

Training Physics-informed Neural Networks.

	300 000 ite	er - batch size 300	L^2 - relative error on the test set				
Exponential decay	xponential decay Grad Norm		Modified MLP	RWF	Magnitude of velocity	Pressure	Runtime (h)
✓	✓	\checkmark	 ✓ 	 Image: A set of the set of the	2.4912e-02	2.8641e-02	9.60
✓	✓	✓	✓	×	2.8433e-02	4.4519e-02	9.57
×	✓	\checkmark	 ✓ 	 Image: A set of the set of the	3.6517e-02	4.7310e-02	9.62
✓	\checkmark	×	 ✓ 	 Image: A set of the set of the	4.0986e-02	3.0455e-02	8.37
✓	×	✓	✓	✓	4.3730e-02	4.1168e-02	5.51
✓	✓	\checkmark	×	 Image: A set of the set of the	6.1967e-02	1.1688e-01	5.43
×	×	×	×	×	2.2596e-01	5.0376e-01	4.21

Table: Ablation study

AAA simulations via PINNs - DeepONet Vs PI-DeepONet

Models' settings

Branch 1 and Branch 2 (MLP, Tanh activation, 3 hidden layers, 100 neurons, 1037 input dim, 400 output dim, Xavier normal initialization)

Trunk (MLP, Tanh activation, 4 hidden layers, 200 neurons, 3 input dim, 400 output dim, Xavier normal initialization)

Training (200 000 iterations, 1024 batch size (batch training), Adam optimizer)

- Dimensionless NSE
- Adaptive sampling within the mesh
- Exponential decay for the learning rate + optimizer scheduler

~			<u> </u>	
()ccor		- FU 7 1	-0073	07
O a car	L. \		GOIIZa	

Data			DeepONet			PI-DeepONet		
Source of data	dataset		MoV	Pressure	Runtime(h)	MoV	Pressure	Runtime(h)
Cross-section / 5 slices	train	V004	1.2238E-01	8.4834E-02	8.93	5.4001E-02	2.0648E-02	14.52
		V006	1.1312E-01	8.9753E-02		3.4948E-02	2.0793E-02	
1.42% of Volume		V01	1.0223E-01	9.8372E-02		2.6794E-02	2.4334E-02	
		V012	9.8716E-02	1.0255E-01		2.7489E-02	2.7283E-02	
		V015	9.4953E-02	1.0834E-01		2.9623E-02	3.1953E-02	
	test	V005	1.1727E-01	8.8884E-02		4.2461E-02	2.3986E-02	
		V008	1.0679E-01	9.3711E-02		2.8150E-02	2.2159E-02	
		V013	9.7288E-02	1.0455E-01		2.8119E-02	2.8774E-02	
Longitudinal / 1 slice	train	V004	1.9664E-01	4.8856E-01	8.93394813	1.4748E-01	1.5595E-02	14.66
- ,		V006	1.9120E-01	5.1318E-01		9.2258E-02	1.4848E-02	
1.87% of Volume		V01	1.8424E-01	5.6148E-01		4.9349E-02	1.5549E-02	
		V012	1.8177E-01	5.8341E-01		4.3853E-02	1.6737E-02	
		V015	1.7889E-01	6.1449E-01		4.3609E-02	1.9169E-02	
	test	V005	1.9376E-01	4.9920E-01		1.1667E-01	2.4341E-02	
		V008	1.8726E-01	5.3853E-01		6.2953E-02	1.6272E-02	
		V013	1.8073E-01	5.9400E-01		4.2964E-02	1.7408E-02	
Random / Coord. points	train	V004	1.7673E-02	6.2008E-03	8.93	3.1676E-02	1.7270E-02	14.74
		V006	1.7109E-02	6.4153E-03		2.0244E-02	1.4592E-02	
0.3% of Volume		V01	1.7208E-02	7.5501E-03		1.1227E-02	9.9699E-03	
		V012	1.7494E-02	8.2986E-03		1.0050E-02	7.7110E-03	
		V015	1.8183E-02	9.7196E-03		1.0552E-02	6.7369E-03	
	test	V005	1.7228E-02	1.2525E-02		2.5097E-02	1.9196E-02	
		V008	1.7087E-02	7.7839E-03		1.4320E-02	1.5595E-02	
		V013	1.7694E-02	8.7354E-03		9.9959E-03	7.0725E-03	

Abach to error

[8/m]

0.200

E 6130

0.005 <u>w</u>

(m) [m]

0.000 -0.030 -0.015 0.000 0.015 x1 [m]

18 / 20

Discussion and conclusions

PINNs

- The method has generalized predictions across an entire domain using sparse data.
- It provided robust initial predictions for flow simulations when the model was trained solely on governing equations and boundary conditions.

(PI-)DeepONets

- We proposed an architecture that integrates multiple inputs and outputs while showing accurate results.
- It can manage varying conditions without requiring the time-consuming retraining process.
- The main strength lay in the ability to generalize inference to unseen input conditions, such as the possibility of inferring whole new V-dependent datasets, within a specified range of trained value (Inference runtime is faster than CFD simulations).

We compared against CFD simulations on benchmark datasets and demonstrate good agreement between the results.

Limitations

PINNs

• The runtime of the training phase of PINNs method is significantly higher than the computational time of CFD simulations.

(PI-)DeepONets

- It requires substantial more training data in comparison to PINNs, which can be costly to obtain.
- On the model may struggle to generalize to inputs outside the specified range of trained values.

Further work

- Extensions to handle unsteady flows and moving boundaries.
- ② Adaptation to more complex biological structures.
- Parameterized PINNs can be considered to address the retraining issue associated with changing conditions.

On Physics-Informed Neural Networks and DeepONet for Vascular Flow Simulations in Aortic Aneurysms

Thanks for your attention!

For further information ...

AAA simulations via (PI-)DeepONet - Training/Test datasets resolution impact

