Comparative study of transformer robustness for multiple particle tracking without clutter

Piyush MISHRA I2M & Inst. Fresnel

Sup: Philippe ROUDOT

G.D.C Ortega, ETH Zurich, 2023

Team Endotrack, Centuri Hackathon 2024

Mapping measurements to states is an inverse problem of data-association

Data-association is a combinatorially hard problem

 $\mathbf{Z} = \mathbf{\Lambda} \cdot \mathbf{X} + \epsilon$

Conventional methods use an iterative estimator as a suboptimal solution

$$p(\mathbf{X}_t | \mathbf{Z}_{1:t}) = p(\mathbf{Z}_t | \mathbf{X}_t) \int p(\mathbf{X}_t | \mathbf{X}_{t-1}) p(\mathbf{X}_{t-1} | \mathbf{Z}_{1:t-1}) d\mathbf{X}$$

association prediction a priori

Conventional methods must prematurely prune hypotheses based on priors

$$egin{aligned} \mathbf{X}_t | \mathbf{Z}_{1:t}) &= egin{split} p(\mathbf{Z}_t | \mathbf{X}_t) \int p(\mathbf{X}_t | \mathbf{X}_{t-1}) p(\mathbf{X}_{t-1} | \mathbf{Z}_{1:t-1}) d\mathbf{X} \ & ext{association} & ext{prediction} & ext{a priori} \ &= \sum_{oldsymbol{\eta}_p^t \in \mathbf{H}_t'} p(\mathbf{Z}_t | \mathbf{X}_t, oldsymbol{\eta}_p^t) p(oldsymbol{\eta}_p^t | \mathbf{X}_t) \int p(\mathbf{X}_t | \mathbf{X}_{t-1}) p(\mathbf{X}_{t-1} | \mathbf{Z}_{1:t-1}) d\mathbf{X} \end{aligned}$$

p(

Attention can be used to make decisions on both states & hypotheses

A simple experimental setup for proof-of-concept

$$y^{t,p} = y^{t-1,p} + \varepsilon^{t,p} + \delta^{p}$$

$$\int_{drift}$$

randomness
with process
noise

$$z^{t,p} = y^{t,p} + \omega^p$$

measurement noise

Mishra, Roudot, 2024

Similarity between ground-truth and prediction is given by Jaccard coefficient

Illustration by Laura Neschen

Attention is robust to increasing noise in long sequences

When Bayesian filtering is optimal, attention is suboptimal

When Bayesian filtering is optimal, attention remains suboptimal

Attention is more efficient when increasing the lookback window

Attention is robust to increasing sequence length

Ongoing work: A frugal tracking strategy that uses attention to build global priors

Applications & preliminary results: Stand on a moving cell

Microscopy images of fruitfly embryo, C. Collinet, IBDM Tracking cells using the Bayesian-Attention hybrid strategy Stabilised region of interest Team Endotrack Centuri Hackathon, 2024

Thank you for your attention 🕲

Mishra, Roudot, 2024