

Artificial Intelligence applied to Plasma Spectroscopy

M. Koubiti¹, N. Saura¹, S. Benkadda¹

¹PIIM, Aix-Marseille Université/CNRS, Marseille, France

R. Guirlet², C. Desgranges²

²IRFM, CEA Cadarache, F-13108 Saint-Paul-Les-Durance, France

O. Peyrusse³

³LP3, Aix-Marseille Université/CNRS, Marseille, France

Background

- Tokamaks are operated with H_2 , D_2 or H_2+D_2
- Fusion reactors will be operated with D₂+T₂

Edge plasma **Divertor** T_e~1-100 eV

The issue of tritium retention

Roth et al 2008 PPCF 50, 103001

Q: Why the radiation emitted by hydrogen isotopes comes from the divertor?

A: Release of hydrogen isotope neutrals

- Chemical desorption of H_2/D_2 molecules followed by dissociation processes: cold population ($T_c = 0.5-3 \text{ eV}$)
- Neutrals released from the target material following H^+/D^+ ion impact (reflection) + Charge exchange processes between $H-H^+$ and $D-D^+$: warm population (T_w = 10-100 eV)

How do the emitted line spectra look like? Balmer- α line profiles governed by Doppler & Zeeman effects

- Zeeman effect (B=1-4 T)
- The angle of observation with respect to the magnetic field line
- Doppler broadening: temperature and fraction of each neutral population
- Concentration of each H isotope

 $H\alpha$ line profiles for an "arbitrary" neutral population

• For an angle of observation θ with respect to B:

Parallel H α /D α line profiles for single populations

(90%D + 10%H)

<mark>Ηα: 6562.8 Å / Dα: 6561.0 Å</mark> <mark>⇒</mark> <u>∆λ(</u>H-D)=1.8 Å

Parallel H α **/D** α line profile for both populations

(90%D + 10%H)

M. Koubiti and M Kerebel 2022 Appl. Sci. 12 9891

Fitting synthetic $H\alpha/D\alpha$ spectra

Fitting experimental $H\alpha/D\alpha$ spectra

• Analysis of measured spectra requires fitting to obtain important parameters like the isotopic ratio (relative isotopic concentration)

	calculated values
T_c	2.1 eV: 47.8 %
$T_{h_{W}}$	22.3 eV: 52.2 $\%$
В	2.45 T
$\rm H/(H+D)$	3.8 %
D/(H+D)	96.2 %

Balmer- α line spectra under tritium operation

- D α and T α lines very close ($\Delta\lambda \sim 0.65$ Å)
- Spectra more complicated to fit, questions about the accuracy of the deduced parameters
 Pulse No.: 92324, time = 6.2 s, LoS 70
- ML can help

V.S. Neverov et al, Nucl. Fusion (2019) 59 046011

Application of a basic neural network model

- Use a fully connected NN algorithm combined with few spectroscopic features (instead of whole spectra) to determine the H/H+D ratios:
- B-field
- Neutral temperatures $T_{\rm c}$ and $T_{\rm w}$
- Wavelength separation: $\Delta \lambda_{H_{\alpha} \sigma^{-}(D)}$
- Peak-to-peak intensity ratio: $I_{\sigma^+(H)}/I_{\sigma^-(D)}$
- Dip-to-peak intensity ratio: $I_{Dip(D)}/I_{\sigma^{-}(D)}$

- Spectra generated by varying several parameters and including a gaussian noise.
- Pre-processing code extracting input features for the NN model: It determines the spectral minima and maxima and then calculate wavelength separation, peak-topeak and dip-to-peak intensity ratios.

The basic NN model (TensorFlow ML platform)

- Input layer (6 nodes): B, T_c, T_w, $\Delta \lambda_{H_{\alpha}-\sigma^{-}(D)}$, $I_{\sigma^{+}(H)}/I_{\sigma^{-}(D)}$, $I_{Dip(D)}/I_{\sigma^{-}(D)}$)
- Output layer (1 node=H/H+D) : $\eta_H = \frac{n_H}{n_H + n_D}$
- Six intermediate layers with hundreds of neurons (nodes)

M. Koubiti and M Kerebel 2022 Appl. Sci. 12 9891

https://www.tensorflow.org/guide https://keras.io/api/optimizers/adam/

Predictions of the basic NN model

• These errors are not inherent to the NN algorithm but to the inaccuracy in the extraction of the spectroscopic features by the preprocessing code.

Use of an advanced 1D-CNN model Generation of the Balmer α spectra to be trained instead of the few characteristics

- Variation of the parameters:
 - B in the range 1-4 T
 - Concentration of D in the range 1-100%
 - Cold population fraction in the range 40-100%
 - Temperatures: 0.5-3 eV & 10-30eV
- Training set: over 360 000 profiles & Test set: over 90 000 profiles.

Use of an advanced 1D-CNN model Use of whole Balmer α spectra instead of few characteristics

- Use of 3 convolution layers, ReLU and swish activation functions
- Loss function: $L = 0.5 \times MAE + 0.5 \times MSE + 10^{-4} \times Max(y y_{pred})^2$

A. Krizhevsky et al, Advances in neural information processing systems, 25 (2012)

Visualization of the input data: Principal Component Analysis

PCA projections of test set are clustered by isotopic ratio values \rightarrow An efficient and generalized learning expected

Results of the advanced 1D-CNN model for HD mixtures

H concentration predictions

The CNN model gives better results than the basic NN model for HD plasmas

Predictions of the 1D-CNN model for DT mixtures

The CNN model predictions are better for HD plasmas than for DT plasmas

Trends of the 1D-CNN model predictions

22.8

28.2

Expected data (%)

33.7

aml

6.4

11.9

17.3

Universite

Expected data (%)

Prediction spread for T (mix=DT, all angles)

39.1

44.5

50.0

Mag. Field values (T)

2.0

Tungsten EUV emission in WEST

Spectral range: 15-70 Å, ionization stages: W²⁷⁺-W⁴⁵⁺

Use of CRM modeling

Collisional-radiative modeling and radiative emission of tungsten in tokamak plasmas in the temperature range (800–5000) eV @

M. Y. Boumendjel,¹ C. Desgranges,¹ R. Guirlet,¹ West Team^{1,a)} and O. Peyrusse^{2,b)}

AFFILIATIONS

¹CEA, IRFM, F-13108 St Paul-lez-Durance, France ²Aix-Marseille Université, CNRS, Laboratoire LP3, UMR7341, 13288 Marseille, France

• First idea: use 1D-CNN AlexNet to determine $T_{e, Max}$ for each spectrum

Model predictions

| 2nd AI@AMU Workshop |

• Second idea: use other models like Auto-Encoders (AE) to generate W spectra from $T_{e, Max}$.

Preliminary results not satisfying \Rightarrow use spatial T_e profiles as targets for the model training

Summary

- The application of the 1D-CNN model (adapted Alex-Net) to theoretical profiles of the Balmer- α line emitted by hydrogen isotopes for tokamak divertor conditions are promising: the model allows to predict the isotopic ratios in both HD and DT plasmas. However, its gives better results for HD than DT mixtures.
- The model needs to be assessed by applying it to experimental spectra from different magnetic fusion devices (WEST and JET).
- The application of the 1D-CNN model and other models like AEs to experimental EUV tungsten spectra from WEST give results which are not yet satisfying. Therefore, more data and more investigations are needed.