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Physics Informed Neural Networks

Deep Neural Networks

Let us consider a feedforward neural network consisting of n hidden
layers, each layer being of width N;. The DNN with input z¢ and
output z,+1 is defined as

Input layer: 20,
Hidden layers: z; = o(W;zi—1 +b;), i=1,---.,n,
Output layer:  z,11 = Wyi12n + bpy1,

where

o = given activation function,
W, = weights matrix with size N; x N;_1,

b, = biases vector with size IV;.
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Physics Informed Neural Networks

PINNs [Raissi et al.(2019)]

Consider the linear PDE in its residual form:
R(z,u(x)) := f(x) — Au(x) =0, V€ L,
with the zero Dirichlet boundary conditions
B(z,u(x)) :=u(x) =0, V€ .

Defining a function g(x) that vanishes on the boundary, we
approximate u with

i = g = g(®) 241,

by minimizing the loss function
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Physics Informed Neural Networks

Model Problem

We will use the one dimensional Poisson problem to back our
findings. Our goal is to find u(z) that satisfies
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f(x), Vo € (0,1),
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The source term f is chosen such that the exact solution is

U(.ﬁE) _ esin(kfrx) + .1'3 —r— 1’

where k is a given integer.
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Physics Informed Neural Networks

Optimization Algorithm

Solving Poisson problem for k& = 2 using:

> Adam

> Adam followed by L-BFGS
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Error Analysis
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If we want to approximate the remaining error with a new neural

network, two issues arise:

> the error is not normalized

> the error exhibits higher frequencies
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rection

Normalization
Poisson problem with the exact solution:

u(a:) _ l(esin(Qﬂx) + x3 —r— 1)
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Error Correction

High Frequencies

We consider again the Poisson problem on 2 = (0,1), with k£ = 10.

To approximate high frequencies we present the Fourier feature

mapping:

~y(x) = [cos(wprx), sin(wprx)],

Vo(x) = [sin(warz)].

with
wy = [207,...,2M g
Method 1 Method 2 Method 3
20 x (x) (@)
i | znp12(1 —2) | zpprz(l —2) | M7y, (2) - 2p41
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High Frequencies

Poisson problem with the exact solution:

U(SZ') — esin(lOﬂ'z) + 373 —r—1
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Multi-level Neural Networks

Correction Neural Network

Consider an initial solution %y to the boundary value problem.

We define the error in g as e(x) = u(x) — tp(x) and satisfies:

R(x,tg(x)) — Ae(x) =0, Ve 2,
B(z,e(x)) =0, Ve dfl

In order to normalize the solution we will modify the problem to:

R(x,é(x)) = pR(x,up(x)) — Aé(x) =0, Vo e (2,
B(z,é(x)) =0, VYa € 01

The corrected solution is given as:

_ 1.

u(x) = ap(x) + ;e(sc).
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Multi-level Neural Networks

Multi-level Neural Networks

Considering the first normalized approximation verifying:

Ro(x, uo(x)) = pof(x) — Auo(x)
B(x,up(x))

Y € (2,

=0,
=0, Vxecofl

Each new correction wu; then satisfies the boundary-value problem:

Rz(m,uz(m)) = NiRifl(:L',ﬂifl(x)) — Aul(m) =0, Vx e/,
B(xz,ui(x)) =0, Yz € 012

The final approximation @ of u is given as:

&(m):iﬁo(m)—k ! ﬁl(m)+...+¥uL(:c).

Ho Mo LOMT - - - UL
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Multi-level Neural Networks

MLNNs Example
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Multi-level Neural Netwo

MLNNs Example
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> The error is reduced to the order of 10712 after three corrections

> Even after normalizing the amplitude of uy(z) is small
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Multi-level Neural Networks

Extreme Learning Method

To suitably choose the normalizing factors u; we will:
> Calculate a coarse prediction of the remaining error using the
Extreme Learning Method

> Choose p; using the amplitude of the estimated error

In the Extreme Learning Method the solution is approximated
with a neural network by:

> Fixing the parameters of the hidden layers

> Minimizing the loss function with respect to the output layer
parameters using a least square method

We choose the Extreme Learning Method because it is fast and
scale independent.
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MLNNs Example with ELM
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More Nume

Helmholtz Equation

One dimensional Helmholtz equation

—Ogzu(x) — 9200u(x) = 0,
u(0) =0, 1
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More Numerical Examples

Helmholtz Equation
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More Numerical Es

2D Poisson Equation

Two dimensional Poisson problem

_VQU(xvy) - f(
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2D Poisson Equation
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More Nume

Non-linear problem

Non-linear boundary value problem

- :L‘xu(ﬁ) - 8u(:c)8xu(ﬂc) =0, Vx € (0, 1),
u(0) = —1, u(l) = —1/5.
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Conclusion

Summary

> Introduced the multi-level neural networks to control and reduce
the errors for linear BVPs when using deep learning approaches

> Addressed the issues of low amplitudes and high frequencies to
correct the resulting errors

> Exhibited the potential of MLNNs to significantly reduce L? and
H?' errors for various BVPs, achieving machine precision in some
cases

> For future work, we aim to extend MLNNs to other deep learning
approaches and propose automated hyper-parameter selection for
different levels
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Conclusion

Thank you!

For further details:

Aldirany, Z., Cottereau, R., Laforest, M., Prudhomme, S. (2024). Multi-level
Neural Networks for Accurate Solutions of Boundary-Value Problems. Comp.
Meth. Appl. Mech. Eng. 419(116666).

arXiv:2308.11503.
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