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Physics Informed Neural Networks

Deep Neural Networks

Let us consider a feedforward neural network consisting of n hidden
layers, each layer being of width Ni. The DNN with input z0 and
output zn+1 is defined as

Input layer: z0,

Hidden layers: zi = σ(Wizi−1 + bi), i = 1, · · · , n,
Output layer: zn+1 = Wn+1zn + bn+1,

where
σ = given activation function,

Wi = weights matrix with size Ni ×Ni−1,

bi = biases vector with size Ni.
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Physics Informed Neural Networks

PINNs [Raissi et al.(2019)]

Consider the linear PDE in its residual form:

R
(
x, u(x)

)
:= f(x)−Au(x) = 0, ∀x ∈ Ω,

with the zero Dirichlet boundary conditions

B
(
x, u(x)

)
:= u(x) = 0, ∀x ∈ ∂Ω.

Defining a function g(x) that vanishes on the boundary, we
approximate u with

ũ = ũθ = g(x)zn+1,

by minimizing the loss function

L(θ) :=
∫
Ω
R
(
x, ũ(x)

)2
dx.
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Physics Informed Neural Networks

Model Problem

We will use the one dimensional Poisson problem to back our
findings. Our goal is to find u(x) that satisfies

−∂xxu(x) = f(x), ∀x ∈ (0, 1),

u(0) = 0,

u(1) = 0.

The source term f is chosen such that the exact solution is

u(x) = esin(kπx) + x3 − x− 1,

where k is a given integer.
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Physics Informed Neural Networks

Optimization Algorithm

Solving Poisson problem for k = 2 using:

▷ Adam

▷ Adam followed by L-BFGS
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Error Correction

Error Analysis

If we want to approximate the remaining error with a new neural
network, two issues arise:

▷ the error is not normalized

▷ the error exhibits higher frequencies
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Error Correction

Normalization

Poisson problem with the exact solution:

u(x) =
1

µ

(
esin(2πx) + x3 − x− 1

)
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Error Correction

High Frequencies

We consider again the Poisson problem on Ω = (0, 1), with k = 10.

To approximate high frequencies we present the Fourier feature
mapping:

γ(x) = [cos(ωMx), sin(ωMx)], γg(x) = [sin(ωMx)].

with
ωM = [20π, . . . , 2M−1π]

Method 1 Method 2 Method 3

z0 x γ(x) γ(x)

ũ zn+1x(1− x) zn+1x(1− x) M−1γg(x) · zn+1
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Error Correction

High Frequencies

Poisson problem with the exact solution:

u(x) = esin(10πx) + x3 − x− 1
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Multi-level Neural Networks

Correction Neural Network

Consider an initial solution ũ0 to the boundary value problem.

We define the error in ũ0 as e(x) = u(x)− ũ0(x) and satisfies:

R(x, ũ0(x))−Ae(x) = 0, ∀x ∈ Ω,

B(x, e(x)) = 0, ∀x ∈ ∂Ω.

In order to normalize the solution we will modify the problem to:

R̃(x, ẽ(x)) = µR(x, ũ0(x))−Aẽ(x) = 0, ∀x ∈ Ω,

B(x, ẽ(x)) = 0, ∀x ∈ ∂Ω.

The corrected solution is given as:

ũ(x) = ũ0(x) +
1

µ
ẽ(x).
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Multi-level Neural Networks

Multi-level Neural Networks

Considering the first normalized approximation verifying:

R0(x, u0(x)) = µ0f(x)−Au0(x) = 0, ∀x ∈ Ω,

B(x, u0(x)) = 0, ∀x ∈ ∂Ω.

Each new correction ui then satisfies the boundary-value problem:

Ri(x, ui(x)) = µiRi−1(x, ũi−1(x))−Aui(x) = 0, ∀x ∈ Ω,

B(x, ui(x)) = 0, ∀x ∈ ∂Ω.

The final approximation ũ of u is given as:

ũ(x) =
1

µ0
ũ0(x) +

1

µ0µ1
ũ1(x) + . . .+

1

µ0µ1 . . . µL
ũL(x).
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Multi-level Neural Networks

MLNNs Example

ũ0 ũ1 ũ2 ũ3

Wave numbers M 1 3 5 1

Normalization µi 1 103 103 102
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Multi-level Neural Networks

MLNNs Example

▷ The error is reduced to the order of 10−12 after three corrections

▷ Even after normalizing the amplitude of ũ2(x) is small
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Multi-level Neural Networks

Extreme Learning Method

To suitably choose the normalizing factors µi we will:

▷ Calculate a coarse prediction of the remaining error using the
Extreme Learning Method

▷ Choose µi using the amplitude of the estimated error

In the Extreme Learning Method the solution is approximated
with a neural network by:

▷ Fixing the parameters of the hidden layers

▷ Minimizing the loss function with respect to the output layer
parameters using a least square method

We choose the Extreme Learning Method because it is fast and
scale independent.
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Multi-level Neural Networks

MLNNs Example with ELM

ũ0 ũ1 ũ2 ũ3

Wave numbers M 1 3 5 1
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Multi-level Neural Networks

MLNNs Example with ELM
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More Numerical Examples

Helmholtz Equation

One dimensional Helmholtz equation

−∂xxu(x)− 9200u(x) = 0, ∀x ∈ (0, 1),

u(0) = 0, u(1) = 1.
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More Numerical Examples

Helmholtz Equation
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More Numerical Examples

2D Poisson Equation

Two dimensional Poisson problem

−∇2u(x, y) = f(x, y), ∀x ∈ Ω,

u(x, y) = 0, ∀x ∈ ∂Ω.
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More Numerical Examples

2D Poisson Equation
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More Numerical Examples

Non-linear problem

Non-linear boundary value problem

−∂xxu(x)− 8u(x)∂xu(x) = 0, ∀x ∈ (0, 1),

u(0) = −1, u(1) = −1/5.
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Conclusion

Summary

▷ Introduced the multi-level neural networks to control and reduce
the errors for linear BVPs when using deep learning approaches

▷ Addressed the issues of low amplitudes and high frequencies to
correct the resulting errors

▷ Exhibited the potential of MLNNs to significantly reduce L2 and
H1 errors for various BVPs, achieving machine precision in some
cases

▷ For future work, we aim to extend MLNNs to other deep learning
approaches and propose automated hyper-parameter selection for
different levels
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Conclusion

Thank you!

For further details:
Aldirany, Z., Cottereau, R., Laforest, M., Prudhomme, S. (2024). Multi-level
Neural Networks for Accurate Solutions of Boundary-Value Problems. Comp.
Meth. Appl. Mech. Eng. 419(116666).
arXiv:2308.11503.
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