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Context

Finding low-rank structures in dynamical systems
• Derive low-rank surrogate models
⇝ Kolmogorov n-width problem [2]

• Separate and analyze the different components
Low-rank structures appear under certain trans-
formations (a.k.a transports)
Applications:

• Model order reduction (e.g. wildland fire model,
turbulence)

• Low-rank denoising (tomography)

sPOD: A nonlinear and low-rank

decomposition

Goal: Decomposing the data q(x, t) into low-rank surrogate

q(x, t) ≈
K∑
k=1

T kqk(x, t) .

where

qk(x, t) ≈
Rk∑
r=1

αk
r (t)φk

r (x) ,

Solution: When {T k} are known, there exist efficient algo-
rithm to determine {qk} [1].

Issues and objectives

Issues: • In real-life applications, {T k}
are hard to determine
• Non-convex optimization
• Alternating optimization on
{qk} and {T k} fails

Object: Learn {T k} and {qk} jointly
using a dual neural network
approach

Optimization problem formulation

Minimizing the loss function:

L({Qk}, {Tk}) def=
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TkQk

∥∥∥∥∥∥∥
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+λ
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∥∥∥
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where Qk = (qk(xm, tn))m,n ∈ RM×N and TkQk = ((T kqk)(xm, tn))m,n ∈ RM×N

⇝ Discretizing the transformed data to avoid interpolation error

NsPOD: Neural sPOD using neural implicit flow

Networks = 3 Hidden fully-connected layers interleaved with ELU

Assumption: {T k} are simple shifts ∆k(t)

Main idea: Separating spatial elements from time
(or other parameters external to space)

• ShapeNet: model the output fields {qk} as functions of space (≈ PINNs)

• Shiftnet: model the transport {T k} and modulate ShapeNet by changing the
space parameters in ShapeNet

Training

•Benefits of NsPOD description:

1. Data points = points {(xm, tm,q(xm, tm)} of the discretization grid
⇝ Cheaper than using a full column of Q in the standard full discrete for-
mulation of sPOD
⇝ Break the curse of dimensionality

2. Training can be performed on points from random or irregular batches
⇝ Training can be performed on mesh agnostic data

•Non-differentiable loss function

⇝ Require using subgradients instead of gradients in training phase

Training data are typically obtained by solving PDE or by measurements

Results

• Synthetic data: q = superposition of 2 Gaussian waves

q(x, t) = sin(t)f
(
x −∆1(t)

)
+ cos(t)f

(
x −∆2(t)

)
with f (x) = exp(−(x − 200)2/42)

Shifts: ∆1(t) = 0.15t3 + 0.8t + 1.5 and ∆2(t) = −18t + 2
Discretization: M = 400 and N = 200
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•Wildlandfire model: q solutions of: (2 fields q⇝ 1 for T and 1 for S){
∂tT = ∇(̇k∇T )− v∇̇T +αSr(µ,T ,Ta)−γ(T − TA)
∂tS = −Sδ(T ,µ,Ta)

Discretization: M = 500 and N = 500
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Conclusion

+Good separation capability + flexibility to the data field
+Continuous setting allows efficient training
+Do not require initialization of the shifts close to the true shifts
−NsPOD may be unstable and sensitive to initialization

Perspectives:

• Extend NsPOD to other kind of transports (not only shifts)

• Use more complex ShapeNet based on PINNs instead of fully-connected lay-
ers networks

• Demonstrate the capability of NsPOD on more complex applications and
more complex discretization grids.
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