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 AI4Science
 Domains and opportunities

 Modeling dynamical systems: challenges for the adoption of AI
 𝐶1: Integration of physical and deep learning models: hybrid modeling
 𝐶2: Generalization: data-driven approaches beyond training data 

distribution
 𝐶3: Neural operators: mesh free approaches for simulation
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AI4Science
AI as a new scientific paradigm



AI for Science
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US-DOE 2020 & 2022

Australia NSA 2022 & 2024
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• Since 2010 AI successes mainly concern the virtual world (semantics, 
game)

• AI4Science emerged in the 2020
• AI for science as a new scientific paradigm

EU 2024



AI4Science: domains and opportunities
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2020: emerging topic
Examines the potential of AI for 

application domains
 Materials, environment, life sciences, 

high energy physics, smart energy
infrastructures, etc

Challenges
 Data

 AI Assisted data acquisition, hypothesis
testing, compression, platforms, …

 Experiments
 self driving laboratories (biology), 

coupling AI and robots
 Models

 e.g. digital twins
 AI challenges

 data complexity, physical plausibility, 
integrating domain knowledge, etc

2022:  Evolution large scale
AI reflects an inflection point.

 Perspective change:  from AI as a tool
towards AI as support for scientific
exploration

Highlights 6 AI paradigms including
 Surrogate models

 Climate, cosmology, high energy
physics, ...

 Foundation models
 Inference and inverse design

 Material, chemistry, biology, molecular
discovery, …

 …



AI4Science – example: weather forecasting
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2022-2023 – Foundation Models for weather prediction (ERA5 
dataset 40 years hourly reanalysis data)
• GraphCast – Google & DeepMind 2022

https://arxiv.org/abs/2212.12794
Blog&Demo:  online demo of weather prediction

• ClimaX – Msoft & UCLA 2023
https://arxiv.org/abs/2301.10343

• Pangu-Weather – Huawei 2023
http://arxiv.org/abs/2211.02556

• FourCastNet – NVIDIA&Lawrence Berkeley lab.&al.
http://arxiv.org/abs/2202.11214

• Neural General Circulation Model – Google 2023
https://arxiv.org/abs/2311.07222

• Aurora - Microsoft 2024
https://arxiv.org/abs/2405.13063

• AIFS, Artificial Intelligence Forecasting System - ECMWF 2024
• https://arxiv.org/abs/2406.01465
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C4: Foundation models for weather forecasting: GraphCast (Lam et al. 
2023 - Google)
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 Data-driven approach to weather forecast
 Learn from historical data

 Training: 39 years (1979-2017) of historical data from ECMWF ERA5 
reanalysis archive – petabytes of data
 ECMWF: European Center for Medium-Range Weather Forecast

 Test: 2018 onward
 Time step: 6 hours
 State variables

 5 surface variables (temperature, wind speed, etc)
 6 athmospheric variables (temp., wind, etc) at 37 pressure levels
 0.25° latitude/ longitude grid, 28x28 kilometer resolution, 1𝑀 points

 Objective
 Given state variables at 𝑡 and 𝑡 െ 6 hours, predict next state (𝑡   6)
 Prediction horizon: 10 days (medium range), auto-regressive model
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AI4Science: example: weather forecasting and climate
Foundation models for weather forecasting: GraphCast (Lam et al. 2023 -
Google)
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 ECMWF is running a series of data-driven forecasts as part of its 
experimental suite. 

 Quote:  “These ML-based weather forecasts first approached the skill of the 
IFS (used as the benchmark for high-quality forecasting), then matched IFS 
skill, and then claimed to surpass our scores. What’s more, making a forecast 
with these models requires only a single GPU, takes less than a minute, and 
consumes a tiny fraction of the energy required for an IFS forecast.”
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See model’s forecasts 
on ECMWF website

These models are free 
and can be downloaded



AI4Science - Context of the presentation
Physics-aware Deep Learning for Dynamical Systems
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 Applications domains - examples

Computational Fluid Dynamics Earth System Science - Climate

Graphical design

Tompson et al. 
2017 

Biology

2024-11-12



C1: Incorporating physical knowledge in 
statistical dynamics models – hybrid systems
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C1 -Incorporating physical knowledge
Why hybrid systems - motivation
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Accelerate computations
 Direct numerical simulation is

usually intractable
 Approximate the high-precision

simulation at a lower
computational cost

Complement physical models
 Part of the physics is unknown

or not considered in the model
 Learn the missing information 

from data

Low to high resolution (Belbute-Peres et 
al. 2020)

Neural General Circulation Model –
weather prediction (Kochkov et al. 2023)

2024-11-12



C1 - Incorporating physical knowledge
APHYNITY:  Augmenting Physical Models with Deep Networks for Complex 
Dynamics Forecasting (Yin et al. 2021, Donà et al. 2022)
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 Context
 Assumptions: incomplete background knowledge is available

 e.g. PDE that only explains partially the phenomenon

 Complement the physical model with a statistical component
 Learn the missing information from data

 Provide a principled framework to make model-based and data-based
frameworks cooperate

 Objective
 Identify the physical parameters (inverse problem)
 The NN component should learn to describe the information that cannot be

captured by the physics (direct problem)
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C1 - Incorporating physical knowledge
APHYNITY:  Augmenting Physical Models with Deep Networks for Complex 
Dynamics Forecasting (Yin et al. 2021, Donà et al. 2022)

 Illustration: damped pendulum
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C1 - Incorporating physical knowledge
APHYNITY:  Augmenting Physical Models with Deep Networks for Complex 
Dynamics Forecasting (Yin et al. 2021, Donà et al. 2022)
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 We consider
 General dynamics of the form ௗ

ௗ௧
ൌ 𝐹ሺ𝑋௧ሻ

 Assumption
 Evolution function 𝐹, will be modeled by a combination of:

 A physical – incomplete model 𝐹∈ ℱ
 An agnostic model (a neural network) 𝐹 ∈ ℱ

 Example:
 Additive decompositions


ௗ
ௗ௧

ൌ 𝐹 𝑋௧ ൌ 𝐹 𝑋௧  𝐹ሺ𝑋௧ሻ , with 𝐹 ∈ ℱ and 𝐹 ∈ ℱ

 Ill-posed problem
 The decomposition 𝐹 𝑋௧  𝐹ሺ𝑋௧ሻ is usually not unique

 Turned into a well posed optimization problem
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C1 - Incorporating physical knowledge
APHYNITY:  Augmenting Physical Models with Deep Networks for Complex 
Dynamics Forecasting (Yin et al. 2021, Donà et al. 2022)

 Intuition
 𝐹 should explain as much of the dynamics as possible

 Learn 𝐹 and 𝐹 so that 𝐹 explains only the residual unexplained by 𝐹

 Formalization: training objective
 Given a normed vector space (ℱ, . ሻ

 𝑀𝑖𝑛ி∈ℱ,ிೌ ∈ℱೌ 𝐹 , s.t. ∀𝑋 ∈ 𝐷, ௗ
ௗ௧

ൌ 𝐹 𝑋௧  𝐹ሺ𝑋௧ሻ

 Theoretical insights
 If ℱ is a proximinal set, there exists a minimizing decomposition.

 If ℱ is a Chebyshev set, the optimization problem admits a unique 
minimizer, hence identifiability is guaranteed.
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C1 - Incorporating physical knowledge
APHYNITY:  Augmenting Physical Models with Deep Networks for Complex 
Dynamics Forecasting (Yin et al. 2021, Donà et al. 2022)
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Differentiable solver

Neural
Network

• The evolution function solution, combines a differentiable
numerical solver with a NN residual component

• The parameters of the solver and of the neural network are 
learned from data

• Solving amounts at integrating this evolution function in time



C1 - Incorporating physical knowledge
Cardiac electrophysiology (Kashtanova, Sermesant et al. 2022 - Epione team 
Inria Sophia)
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 Objective
 Modeling the dynamics of cardiac electrical activity

 Normal and pathological conditions

 Variable of interest: Action Potential (mVolts) wave propagation

Fig. Wikipedia
Fig. drawittoknowit.com
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C1 - Incorporating physical knowledge
Cardiac electrophysiology (Kashtanova et al. 2022)
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 Objective
 Modeling the dynamics of cardiac electrical activity

 Setting 1: In Silico Data
 Complex high fidelity model – considered as Ground Truth

 e.g. Ten Tusscher-Panvilov 2004
 # hidden variables and parameters, computationally expensive (43 variables)

 Surrogate low fidelity model – Incomplete phenomenological model
 e.g.  Mitchell Schaeffer 2003 – 6 parameters model
 In the experiments, 3 parameters to be estimated + 3 fixed
 Rapid prototyping, less precise - Reaction-diffusion model

 Objective
 Learn to simulate high fidelity data using a combination of low fidelity model 

(Mitchell Schaeffer) and residual neural network – APHYNITY framework
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C1 - Incorporating physical knowledge
Cardiac electrophysiology (Kashtanova et al. 2022)
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 In silico data - Example: polarization phase
 Slab of 2D cardiac tissue of 24x24 elements

 Ex-vivo data
 Optical data from swine hearts

2024-11-12



C2: Tackling the generalization problem
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C2: Tackling the generalization problem for dynamical systems
Motivating examples

One underlying process – Multiple environments

Modelling epidemics in different 
countries

Modeling heart electrical 
diffusion from different patients

Predictions of sea 
surface temperature 
from satellite data –
different areas
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Fig. Fresca 2020
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C2: Tackling the generalization problem for dynamical systems
Domain Generalization
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 Problem setting
 Assumption: there exists a set of environments 𝐸 ൌ ሼ𝑒ሽ, each governed

by a differential equation ௗ௫


ௗ௧
ൌ 𝑓 𝑥௧

 Sharing commonalities e.g. general form of the dynamics (shared parameters
𝜃)

 With specificities, e.g. coefficients of the PDE, initial & boundary conditions, 
forcings, spatio-temporal domains, etc (Specific parameters 𝜃)

 Challenge
 How to leverage this setting in order to generalize to unseen situations 

and new environments?
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C2: Tackling the generalization problem for dynamical systems
Domain Generalization
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 Usual practice in ML (Empirical Risk Minimization)
 Training dataset: sample environment distribution and for each

environmen sample the trajectory distribution
 Expect this will generalize to new environments
 This assumes:

 i.i.d. distribution, dataset large enough to cover the data distribution and 
represent the diversity of situations

 Not realistic

 Claim
 The models should leverage adaptive conditioning to the environment

2024-11-12



C2: Tackling the generalization problem for dynamical systems
Domain Generalization (Kassai et al. 2024)
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ERM baselines vs environment adaptive conditioning

Gray-Scott Burgers

ERM baselines
ERM baselines

Adaptive conditioning Adaptive conditioning

Foundation model



C2: Tackling the generalization problem for dynamical systems
CODA framework (Kirchmeyer et al. 2022, Kassai et al. 2024
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 How to – Intuition: Meta-learning for fast adaptation to new 
environments
 Training

 Learn on a sample of the domains’ distribution (i.e. different environments)
 𝜃 ൌ 𝜃  𝛿𝜃

 𝜃 shared parameters across environments, 𝛿𝜃environment specific
parameters

 So that it could adapt fast and with a few shots to a new environment

 Inference: for a new environment fast adaptation with a few samples

2024-11-12



C2:Tackling the generalization problem for dynamical systems
CODA framework (Kirchmeyer et al. 2022)
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• Four parameters, two fixed (𝛼, 𝛾) and two
(𝛽, 𝛿) change accross environments

• Training on 9 environments (yellow)
• Top: Evaluation on 2600 new 

environments
• Bottom: phase portraits for 4 new 

environments 𝒆𝟏to 𝒆𝟒
• Blue trajectories: ground truth
• Green trajectories: predicted2024-11-12



C3: Neural operators: beyond mesh based
approaches for simulation
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C3: Neural operators
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Classical numerical solvers
operate on grids or meshes

(finite differences, finite elements, 
finitie volumes)

Neural solvers operate on 
tensors (grids) or on graphs

(irregular meshes)

Neural operators is a recent
topic aiming at learning maps

between function spaces instead
of vector spaces

 e.g. images are considered as 
continuous functions

Key ideas
 Functions and operators are 

mesh/ resolution invariant
 They can be applied for different

geometries, for multiple 
resolutions

Learning operator methods are 
data driven



C3: Neural operator
Encode – Process – Decode framework
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Encode-Process-Decode has become the standard framework for 
many spatio-temporal forecasting problems

Decoder

Processor: time stepping
Unroll the dynamics in a latent space

௧ ௧ା௧

Encoder



C3: Neural operators
AROMA: Attentive Reduced Order Model with Attention (Serrano et al. 2024)
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 Principled Framework:
 Properties

 Handle diverse geometries: inputs and outputs may consist in point sets, grids, 
meshes

 Can be queried at any spatial position

 Demonstrates how modern NN components allow building versatile 
PDE solvers

 Encode/ Process/ Decode framework
 Encoding: cross-attention maps variable-size inputs to a fixed-size compact 

latent token space encoding local spatial information
 Processing: a diffusion transformer architecture to model dynamics and 

exploit spatial relations locally and globally via self-attention + model 
uncertainty

 Decoding: uses a conditional neural field + cross-attention to query 
forecast values at any spatial point within the equation's domain



C3: Neural operators
AROMA: Attentive Reduced Order Model with Attention (Serrano et al. 2024)
General framework
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Cross-attention encoder: 𝑢௧ → 𝑍௧

• Encodes variable size discretized input 𝑢ሺሻ into a fixed size & small
dimensional sequence of latent embedding tokens 𝑍

• 𝑍 encodes local spatial information on problem geometry + variable 
values

Cross-attention

Encoder module



C3: Neural operators
AROMA: Attentive Reduced Order Model with Attention (Serrano et al. 2024)
General framework
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Time stepping transformer: 𝑍௧ → 𝑍௧ା௧

• Learns the dynamics in the small dimensional latent space
• Self attention models relations between spatial latent tokens
• Inference: dynamics is enrolled in the latent space starting from an 

initial condition– low complexity
• Diffusion: introduces a stochastic component

Self-attention

Processor



C3: Neural operators
AROMA: Attentive Reduced Order Model with Attention (Serrano et al. 2024)
General framework
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Cross-attention neural fields decoder: 𝑍௧ା௧ → 𝑢௧ା௧

• Maps the latent representation 𝑍௧ା௧ to the original physical space
• Can be queried at any position 𝑥 of the physical space

Cross-attention

Decoder module



C3: Neural operators
AROMA: Attentive Reduced Order Model with Attention
Cross-attention encoder captures spatial attention
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Cylinder flow ground truth Tokens capture and encode local spatial 
information – cross attention between

𝑇 tokens and "𝑥"

Example: Navier Stokes – cylinder flow
Cross attention illustration



AROMA: Attentive Reduced Order Model with Attention
Stability on long rollouts
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Burgers equation
Trained to predict next step on 50 time steps

trajectories
Unrolled for 200 steps



AROMA: Attentive Reduced Order Model with Attention
Stability on long rollouts
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 Navier Stokes
Trained to predict next step on 20 time steps

trajectories
Unrolled at test for 40 steps

Ground truth

Ground truth

Prediction

Prediction



Conclusion
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 AI4Science
 Still an open field, with several challenges
 Already significant demonstrations in fields like weather forecasting, 

biology, materials, molecular design, …
 Crucial role of curated data collections
 Quest for foundation models

 Key issue
 Crucial role of pluridisciplinary teams and efforts
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