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Outline

» Al4Science

» Domains and opportunities

» Modeling dynamical systems: challenges for the adoption of Al
» (1:Integration of physical and deep learning models: hybrid modeling

» (2:Generalization: data-driven approaches beyond training data
distribution

» (3:Neural operators: mesh free approaches for simulation
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Al4Science
Al as a new scientific paradigm




Al for Science

("« Since 2010 Al successes mainly concern the virtual world (semantics,
game)
* Al4Science emerged in the 2020
N » Al for science as a new scientific paradigm )

| Australia NSA 2022 & 2024 |
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for science foundation models
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AI4SClence domains and opportunities

. . 2022: Evolution large scale \

Examlnes the potential of Al for Al reflects an inflection point.
application domains » Perspective change: from Al as a tool
» Materials, environment, life sciences, towards Al as support for scientific
high energy physics, smart energy exploration
infrastructures, etc
Challenges Highlights 6 Al paradigms including
> Data » Surrogate models

Al Assisted data acquisition, hypothesis

) : Climate, cosmology, high ener
testing, compression, platforms, ... &y, g &/

physics, ...

» Experiments » Foundation models
self dl'."v'rEI Iabgratl‘;r'tes (biology), » Inference and inverse design
coupling Al and robots . _ .
»  Model Material, chemistry, biology, molecular
odels discovery, ...
e.g. digital twins >

» Al challenges

data complexity, physical plausibility,
integrating domain knowledge, etc
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Al4Science — example: weather forecasting

an® -

<@ 2022-2023 - Foundation Models for weather prediction (ERA5
<> dataset 40 years hourly reanalysis data)
+: * GraphCast - Google & DeepMind 2022
£ https://arxiv.org/abs/2212.12794
Blog&Demo: online demo of weather prediction
* ClimaX - Msoft & UCLA 2023
https://arxiv.org/abs/2301.10343
« Pangu-Weather — Huawei 2023
http://arxiv.org/abs/2211.02556
* FourCastNet — NVIDIA&Lawrence Berkeley lab.&al.
http://arxiv.org/abs/2202.11214
* Neural General Circulation Model — Google 2023
https://arxiv.org/abs/2311.07222
* Aurora - Microsoft 2024
https://arxiv.org/abs/2405.13063
+ AIFS, Artificial Intelligence Forecasting System - ECMWF 2024
» https://arxiv.org/abs/2406.01465
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C4: Foundation models for weather forecasting: GraphCast (Lam et al.
2023 - Google)

» Data-driven approach to weather forecast

» Learn from historical data

» Training: 39 years (1979-2017) of historical data from ECMWF ERAS
reanalysis archive — petabytes of data

ECMWEF: European Center for Medium-Range Weather Forecast
» Test: 2018 onward
» Time step: 6 hours
» State variables
5 surface variables (temperature, wind speed, etc)
6 athmospheric variables (temp., wind, etc) at 37 pressure levels
0.25° latitude/ longitude grid, 28x28 kilometer resolution, 1M points
» Obijective
» Given state variables at t and t — 6 hours, predict next state (t + 6)
» Prediction horizon: 10 days (medium range), auto-regressive model
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Al4Science: example: weather forecasting and climate
Foundation models for weather forecasting: GraphCast (Lam et al. 2023 -
Google)

» ECMWVF is running a series of data-driven forecasts as part of its
experimental suite.

Quote: “These ML-based weather forecasts first approached the skill of the
IFS (used as the benchmark for high-quality forecasting), then matched IFS
skill, and then claimed to surpass our scores.What’s more, making a forecast
with these models requires only a single GPU, takes less than a minute, and
consumes a tiny fraction of the energy required for an IFS forecast.”

Experimental: GraphCast ML model: Mean sea level
pressure and 850 hPa wind speed

hws 02 May 2024 00 UTC Valid time: Thu 02 May 2024 00 UTC (+0h) Area : Europe
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See model’s forecasts
on ECMWF website

These models are free
and can be downloaded

B & : : [1-12
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Al4Science - Context of the presentation
Physics-aware Deep Learning for Dynamical Systems

» Applications domains - examples

Computational Fluid Dynamics Earth System Science - Climate

Graphical design

Tompson et al.



C1: Incorporating physical knowledge in
statistical dynamics models — hybrid systems




C1 -Incorporating physical knowledge
Why hybrid systems - motivation

" Accelerate computations A

» Direct numerical simulation is
usually intractable

» Approximate the high-precision

Eomplement physical models )

k simulation at a lower

L

» Part of the physics is unknown
or not considered in the model

» Learn the missing information
from data

computational cost
Low to high resolution (Belbute-Peres et

Neural General Circulation Model —
weather prediction (Kochkov et al. 2023)

al. 2020)
e 2 =
(Me‘h—‘_[g|_~ Z'| — e |§’—Zk‘ﬂ L s60 —p ZK g
I Up = SU2(X¢. AoA, Mach)
AocA UP- Uis1 = Upsample(U;), i =0,...,L
Mach sample
Zo = [X,SDF(X), AoA, Mach]
Zis1 = ReLU(GCN;(Z;)), i=0,....k-2
Zi = [ReLU(GCNL(Z3—1)). Uy]
c“m SU2 Zipisn = ReLU(GONL4i(Ziss)), i=0.... . K —k
o= Y = GCNk(Zk)
Mcsh
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C1 - Incorporating physical knowledge
APHYNITY: Augmenting Physical Models with Deep Networks for Complex
Dynamics Forecasting (Yin et al. 2021, Dona et al. 2022)

» Context

» Assumptions: incomplete background knowledge is available
e.g. PDE that only explains partially the phenomenon
» Complement the physical model with a statistical component

Learn the missing information from data

» Provide a principled framework to make model-based and data-based
frameworks cooperate

» Objective
|dentify the physical parameters (inverse problem)

The NN component should learn to describe the information that cannot be
captured by the physics (direct problem)
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C1 - Incorporating physical knowledge
APHYNITY: Augmenting Physical Models with Deep Networks for Complex
Dynamics Forecasting (Yin et al. 2021, Dona et al. 2022)

» lllustration: damped pendulum

Mean Square Error(MSE)=1.5 10! , MSE=7.6 10! Error T,=12.9% MSE=1.9 10 Error T,=0.3%
1.0 1 1.0 +
0.5 1 1 0.5 1
0.0 - 0.0 4
- 4 0 4
0.3 -0.5 -
_10 .
14 -1.0 -
=151 —e— GT trajectory —e— GT trajectory 1.5 —e— GT trajectory
-2.0 —e— prediction —e— prediction ' —e— prediction
' T T T T T _2 T T T T T T T T T T
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40

(a) Data-driven Neural ODE (b) Simple physical model (¢) Our APHYNITY framework

Figure 1: Predicted dynamics for the damped pendulum vs. ground truth (GT) trajectories 4°¢/d? +
wj sinf + adf/at = 0. We show that in (a) the data-driven approach (Chen et al., 2018) fails to
properly learn the dynamics due to the lack of training data, while in (b) an ideal pendulum cannot
take friction into account. The proposed APHYNITY shown in (¢) augments the over-simplified
physical model in (b) with a data-driven component. APHYNITY improves both forecasting (MSE)
and parameter identification (Error Tj;) compared to (b).
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C1 - Incorporating physical knowledge
APHYNITY: Augmenting Physical Models with Deep Networks for Complex
Dynamics Forecasting (Yin et al. 2021, Dona et al. 2022)

» We consider
» General dynamics of the form % = F(X;)

» Assumption

» Evolution function F, will be modeled by a combination of:
A physical — incomplete model F,€ F,
An agnostic model (a neural network) F, € F,
» Example:
» Additive decompositions

dX;
dt

>

= F(X,) = F,(X,) + F,(X,) , with E, € F, and F, € F,

» lll-posed problem

» The decomposition F,(X;) + F;(X;) is usually not unique
Turned into a well posed optimization problem
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C1 - Incorporating physical knowledge
APHYNITY: Augmenting Physical Models with Deep Networks for Complex
Dynamics Forecasting (Yin et al. 2021, Dona et al. 2022)

» Intuition
» E, should explain as much of the dynamics as possible

Learn F, and E, so that F; explains only the residual unexplained by F,

» Formalization: training objective

» Given a normed vector space (F, ||.||)

ax
— = Fp(Xt) + Fa(Xt)

MianETp,FaETa”Fa”aS-t- VX €D, It

» Theoretical insights
» If F, is a proximinal set, there exists a minimizing decomposition.

» If F, is a Chebyshev set, the optimization problem admits a unique
minimizer, hence identifiability is guaranteed.
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C1 - Incorporating physical knowledge
APHYNITY: Augmenting Physical Models with Deep Networks for Complex
Dynamics Forecasting (Yin et al. 2021, Dona et al. 2022)

"+ The evolution function solution, combines a differentiable )
numerical solver with a NN residual component
* The parameters of the solver and of the neural network are
learned from data
\_ * Solving amounts at integrating this evolution function in time )

argmin  ||F,|| APHYNITY training
Fp€F? Fo€F

Q_&_, Physical

(Xt)e=1.1
SolveODE(XO,F +F,,(1:T))

/' I P '
Dtrain - F W

1 XT

= (Fp + Fu)(X4)

Differentiable solver



C1 - Incorporating physical knowledge

Cardiac electrophysiology (Kashtanova, Sermesant et al. 2022 - Epione team
Inria Sophia)

» Objective
» Modeling the dynamics of cardiac electrical activity
Normal and pathological conditions

» Variable of interest: Action Potential (mVolts) wave propagation

Cardiac Conduction

Na* channels close | 4

¥ Prolonged depolarization
distinguishes cardiac muscle

Phase 1 ¥ cells from skeletal muscle cells

S

< VK]
-] = % Ca** channels close
2 33 B
S b e ccene———— ‘
—é Refractory period Phase 4 | .
= S a2 agtion potential Resting pobanthl o/ \aall /N

cannot be initiated \
Time (msec)
: : : Fig. Wikipedia
Fig. drawittoknowit.com

p 1/ Physics-aware Deep Learning - Dynamical Systems - P. Gallinari 2024-11-12



C1 - Incorporating physical knowledge
Cardiac electrophysiology (Kashtanova et al. 2022)

» Objective
» Modeling the dynamics of cardiac electrical activity
» Setting 1:In Silico Data
» Complex high fidelity model — considered as Ground Truth
e.g. Ten Tusscher-Panvilov 2004
# hidden variables and parameters, computationally expensive (43 variables)
» Surrogate low fidelity model — Incomplete phenomenological model
e.g. Mitchell Schaeffer 2003 — 6 parameters model

O In the experiments, 3 parameters to be estimated + 3 fixed

O Rapid prototyping, less precise - Reaction-diffusion model
» Objective

Learn to simulate high fidelity data using a combination of low fidelity model
(Mitchell Schaeffer) and residual neural network —APHYNITY framework
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C1 - Incorporating physical knowledge
Cardiac electrophysiology (Kashtanova et al. 2022)

» In silico data - Example: polarization phase
» Slab of 2D cardiac tissue of 24x24 elements

T=1ms T=2 ms T=3ms T=4 ms T=5ms T=6 ms T=7 ms T=8 ms T=9ms
0 r1.0 r1.0 1.0 r1.0 r1.0 1.0 1.0 1.0
s
s
=3 0s . Lo.s L 05 o 0.5 * Lo.s
3] (10,10}
[C]
- 0.0 -0.0 0.0 0.0 0.0
BE T r r 1.0 1.0 1.0 r1.0
EE L L Ho. 0. L o. % 0.
gz 3 -] 2 (10,20 | 05
&%
) L Lo. . Loo 0.0 0.0 0.0

Absolute
error

- 0.2 0.2 0.2 0.2 0.2 0.2
r 0.1 0.1 0.1 0.1 01 0.1
- 0.0 0.0 - 0.0 0.0 0.0 -0.0

Figure 2: APHYN-EP predicted dynamics for the transmembrane potential diffusion. The

figure shows a 9 ms of forecast).

» Ex-vivo data
» Optical data from swine hearts

Fig. 2: Example of optical mapping data (tracings of denoised action potential
______________________________________________________________ waves) recorded ex vivo in a porcine heart. ROI B represents an ischaemic region

i i 'O = . _ characterized by a shorten action potential duration (AFEXQ)24ufshedPto the
’ 19 PhySICS aware Deep Learnlng DS normal APD recorded in ROT A.



C2: Tackling the generalization problem




C2: Tackling the generalization problem for dynamical systems
Motivating examples

One underlying process — Multiple environments

Modelling epidemics in different Modeling heart electrical
countries diffusion from different patients
Nombre de nouveaux cas de covid-19 par million d'habitants
Moyenne lissée sur sept jours el
500 A "Pays-Bas
T / ,Espagne
400
300 ..”:'_.Porlugai
i Grece
200
00| e J o
— e e e
0 e ————— SRR e maghe .
R TR N R NN & & Flg Fresca 2020
AR AN A RS RN $

Predictions of sea

surface temperature
from satellite data —
_______________________________________________________________________________________ _differentareas____________| ____.
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C2: Tackling the generalization problem for dynamical systems
Domain Generalization

» Problem setting

» Assumption: there exists a set of environments E = {e'}, each governed
dxi e

dr fe(xt)

Sharing commonalities e.g. general form of the dynamics (shared parameters
6c)

With specificities, e.g. coefficients of the PDE, initial & boundary conditions,
forcings, spatio-temporal domains, etc (Specific parameters 6,)

by a differential equation

» Challenge

» How to leverage this setting in order to generalize to unseen situations
and new environments!?
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C2: Tackling the generalization problem for dynamical systems
Domain Generalization

» Usual practice in ML (Empirical Risk Minimization)

» Training dataset: sample environment distribution and for each
environmen sample the trajectory distribution

» Expect this will generalize to new environments

» This assumes:

i.i.d. distribution, dataset large enough to cover the data distribution and
represent the diversity of situations

» Not realistic
» Claim

» The models should leverage adaptive conditioning to the environment
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‘ C2: Tackling the generalization problem for dynamical systems
Domain Generalization (Kassai et al. 2024)

Physics-aware Deep Learning - Dynamical Systems - P. Gallinari

\

ERM baselines vs environment adaptive conditioning

Gray-Scott

Y

Gray-Scott Equation

Burgers

Burgers Equation

\\\ ERM baselines
. .

Relative Loss (log scale)

————T

w
—_— | | ===
Foundation model "“
Adaptive conditioning

Adaptive conditioning

0 200

1000 0 200

—&— FNO Jansolver —4— Poseidon

400 600 800
Number of Environments

—&— CNN —e&— MPPDE

600 800 1000

Number of Environments

—¥— GEPS

/

Figure 2: Comparison of ERM approaches (shades of blue) and Poseidon foundation model ( green)
with our framework GEPS (red) when increasing the number of training environments.
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C2: Tackling the generalization problem for dynamical systems
CODA framework (Kirchmeyer et al. 2022, Kassai et al. 2024

» How to — Intuition: Meta-learning for fast adaptation to new
environments
» Training
Learn on a sample of the domains’ distribution (i.e. different environments)
O 0 =0+ 66°
0 0¢ shared parameters across environments, § 6 €environment specific
parameters

So that it could adapt fast and with a few shots to a new environment

» Inference: for a new environment fast adapgtion with a few samples
1
jar Q% adaém‘?(ah
7
3

@e,s OQC’.L
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C2:Tackling the generalization problem for dynamical systems
CODA framework (Kirchmeyer et al. 2022)

1.00

T f
© 0.75 {ahm

(%) 3dvwW

0.50 {

=y

/—\\ e; *’/{;—& ey 1 //—/:___—:._._:‘—ei

\\ \ N =
Q IO

—+— Ground truth = Adaptation W|th CoDA

‘\

Figure 2. Adaptation results with CoDA-£; on LV. Parameters
(3,8) are sampled in [0.25,1.25]* on a 51 x 51 uniform grid.
leading to 2601 adaptation environments &,q. ® are training envi-
ronments &;. We report MAPE () across £,q (Top). On the bot-
tom, we choose four of them (x, e;—e4), to show the ground-truth
(blue) and predicted (green) phase space portraits. x, y are respec-
~tively the quantity of prey and predator in the system in Eq. (15).

p 20

Lotka-Volterra (LV, Lotka, 1925) The system describes
the interaction between a prey-predator pair in an ecosys-
tem, formalized into the following ODE:

— = ax — By
o (15)
d—? = 0xy — VY

where x, y are respectively the quantity of the prey and the
predator, a, 3, 9, v define how two species interact.

Physics-aware Deep Learning - D

» Four parameters, two fixed (a, y) and two
(B, 8) change accross environments

« Training on 9 environments

» Top: Evaluation on 2600 new
environments

» Bottom: phase portraits for 4 new
environments e to e,

* Blue trajectories: ground truth

-----j------Green-trajectories:-p{&g_;q_tﬁd----
ynam“;al Systems - E (Sallmarl



C3: Neural operators: beyond mesh based
approaches for simulation




C3: Neural operators

Classical numerical solvers /Iqeural operators is a recent
operate on grids or meshes topic aiming at learning maps
(finite differences, finite elements, between function spaces instead

finitie volumes) of vector spaces

» e.g.images are considered as
continuous functions

Key ideas

» Functions and operators are
mesh/ resolution invariant

» They can be applied for different
geometries, for multiple
resolutions

Neural solvers operate on
tensors (grids) or on graphs

Learning operator methods are
data driven

(irregular meshes)
\_ AN /
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C3: Neural operator
Encode — Process — Decode framework

Encode-Process-Decode has become the standard framework for
many spatio-temporal forecasting problems
ut ut+At

Encoder Decoder

a

-

Processor: time stepping
Unroll the dynamics in a latent space

o _/

~
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C3: Neural operators
AROMA: Attentive Reduced Order Model with Attention (Serrano et al. 2024)

» Principled Framework:

» Properties

Handle diverse geometries: inputs and outputs may consist in point sets, grids,
meshes

Can be queried at any spatial position

» Demonstrates how modern NN components allow building versatile
PDE solvers

Encode/ Process/ Decode framework

O Encoding: cross-attention maps variable-size inputs to a fixed-size compact
latent token space encoding local spatial information

O Processing: a diffusion transformer architecture to model dynamics and
exploit spatial relations locally and globally via self-attention + model
uncertainty

0 Decoding: uses a conditional neural field + cross-attention to query
forecast values at any spatial point within the equation's domain
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C3: Neural operators

AROMA: Attentive Reduced Order Model with Attention (Serrano et al. 2024)
General framework

coordinatesz € RY*%  function values u'e RY*¢

predicted value

,&H—At(m)
A

latent Ikens with a predicted tokens

compressed dimension
o .
Encoder module = |
: Encode e
_'_’ geometry .
| Decoder’,“

TeRIl;de eo x ZteR % "T X
W tokens geometry-aware tokens / coordinate query

Cross-attention encoder: ut —» 7zt

« Encodes variable size discretized input u() into a fixed size & small
dimensional sequence of latent embedding tokens Z

» 7 encodes local spatial information on problem geometry + variable
values
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C3: Neural operators
AROMA: Attentive Reduced Order Model with Attention (Serrano et al. 2024)
General framework

: Selfattention|

Nx2 function values u'e RY

predicted value

,&H—At(m)
A

latent tokens with a predicted toKkens
compressed dimension

Processor

oy Encode
' geometry

@ Decoder
RS sy
learnable tokens geometry-aware tokens coordinate query

Time stepping transformer: Zt — Zt+4t

* Learns the dynamics in the small dimensional latent space

» Self attention models relations between spatial latent tokens

* Inference: dynamics is enrolled in the latent space starting from an
initial condition— low complexity

» Diffusion: introduces a stochastic component
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C3: Neural operators

AROMA: Attentive Reduced Order Model with Attention (Serrano et al. 2024)
General framework

predicted value

,&H—At(m)
A

latent tokens with a predicted tokens
compressed dimension \

Decoder module A

Encode Diffusion ' .
- T former [T
' geometry 7| Trans : .

Latent] :

@ : Refiney . Decoder
gy T R Ztiar ¢ gMxh
learnable tokens geometry-aware tokens coordinate query

Cross-attention neural fields decoder: Zt+At — t+At

« Maps the latent representation Z:*2t to the original physical space
« Can be queried at any position x of the physical space

2 33 Physics-aware Deep Learning - Dynamical Systems - P. Gallinari 2024-



C3: Neural operators
AROMA: Attentive Reduced Order Model with Attention
Cross-attention encoder captures spatial attention

Example: Navier Stokes — cylinder flow
Cross attention illustration

Cylinder flow ground truth Tokens capture and encode local spatial
information — cross attention between

TI9€9 tokens and "x

N Y

|
. ()

o

Er) e
1200800830900 00000000 gthe®
1 C000e0800 pOOTITo00 00008,0 8
08%5 00 Vopo000¥e @osd i n o000 _©

0090000008000 0,0000000,,0000,°,%, co
X e el | K
@
(]
@

e08e0el T Tooee
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AROMA: Attentive Reduced Order Model with Attention
Stability on long rollouts

Burgers equation
Trained to predict next step on 50 time steps

trajectories
\ Unrolled for 200 steps )
Long rollout prediction 200 gt st

.J
15
5
dwesawi)
e
5]
8
dweysawiy.

~
)

w
=)

= i

N
»

o
o

Correlation

%" —e— FNO
—=— ResNet Y

0.5- == AROMA ‘-\
+— AROMA No Diffusion "

50 75 100 135 150
Rollout Steps

Figure 3: Correlation over time for long roll-
outs with different methods on Burgers
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AROMA: Attentive Reduced Order Model with Attention
Stability on long rollouts

4 4 Navier Stokes A
Trained to predict next step on 20 time steps
trajectories
\ Unrolled at test for 40 steps )

rrecicion [P PV MM RS SSEEEEEEE

(a) In-t

RN A d L L L L L LLLL L
i A A L L L LLLL LY

(b) Out-t

Figure 12: Test example rollout trajectories with AROMA on Navier-Stokes. Top: predicted tra-
jectory on In-t. Bottom: trajectory on Out-t. First row in each subfigure shows the prediction, the
second row shows the ground truth.



Conclusion

» Al4Science

» Still an open field, with several challenges

» Already significant demonstrations in fields like weather forecasting,
biology, materials, molecular design, ...

» Crucial role of curated data collections

» Quest for foundation models

» Key issue

» Crucial role of pluridisciplinary teams and efforts
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