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 AI4Science
 Domains and opportunities

 Modeling dynamical systems: challenges for the adoption of AI
 𝐶1: Integration of physical and deep learning models: hybrid modeling
 𝐶2: Generalization: data-driven approaches beyond training data 

distribution
 𝐶3: Neural operators: mesh free approaches for simulation
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AI4Science
AI as a new scientific paradigm



AI for Science
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US-DOE 2020 & 2022

Australia NSA 2022 & 2024
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• Since 2010 AI successes mainly concern the virtual world (semantics, 
game)

• AI4Science emerged in the 2020
• AI for science as a new scientific paradigm

EU 2024



AI4Science: domains and opportunities
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2020: emerging topic
Examines the potential of AI for 

application domains
 Materials, environment, life sciences, 

high energy physics, smart energy
infrastructures, etc

Challenges
 Data

 AI Assisted data acquisition, hypothesis
testing, compression, platforms, …

 Experiments
 self driving laboratories (biology), 

coupling AI and robots
 Models

 e.g. digital twins
 AI challenges

 data complexity, physical plausibility, 
integrating domain knowledge, etc

2022:  Evolution large scale
AI reflects an inflection point.

 Perspective change:  from AI as a tool
towards AI as support for scientific
exploration

Highlights 6 AI paradigms including
 Surrogate models

 Climate, cosmology, high energy
physics, ...

 Foundation models
 Inference and inverse design

 Material, chemistry, biology, molecular
discovery, …

 …



AI4Science – example: weather forecasting

Physics-aware Deep Learning - Dynamical Systems - P. Gallinari6

2022-2023 – Foundation Models for weather prediction (ERA5 
dataset 40 years hourly reanalysis data)
• GraphCast – Google & DeepMind 2022

https://arxiv.org/abs/2212.12794
Blog&Demo:  online demo of weather prediction

• ClimaX – Msoft & UCLA 2023
https://arxiv.org/abs/2301.10343

• Pangu-Weather – Huawei 2023
http://arxiv.org/abs/2211.02556

• FourCastNet – NVIDIA&Lawrence Berkeley lab.&al.
http://arxiv.org/abs/2202.11214

• Neural General Circulation Model – Google 2023
https://arxiv.org/abs/2311.07222

• Aurora - Microsoft 2024
https://arxiv.org/abs/2405.13063

• AIFS, Artificial Intelligence Forecasting System - ECMWF 2024
• https://arxiv.org/abs/2406.01465
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C4: Foundation models for weather forecasting: GraphCast (Lam et al. 
2023 - Google)
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 Data-driven approach to weather forecast
 Learn from historical data

 Training: 39 years (1979-2017) of historical data from ECMWF ERA5 
reanalysis archive – petabytes of data
 ECMWF: European Center for Medium-Range Weather Forecast

 Test: 2018 onward
 Time step: 6 hours
 State variables

 5 surface variables (temperature, wind speed, etc)
 6 athmospheric variables (temp., wind, etc) at 37 pressure levels
 0.25° latitude/ longitude grid, 28x28 kilometer resolution, 1𝑀 points

 Objective
 Given state variables at 𝑡 and 𝑡 െ 6 hours, predict next state (𝑡 ൅  6)
 Prediction horizon: 10 days (medium range), auto-regressive model

2024-11-12



AI4Science: example: weather forecasting and climate
Foundation models for weather forecasting: GraphCast (Lam et al. 2023 -
Google)
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 ECMWF is running a series of data-driven forecasts as part of its 
experimental suite. 

 Quote:  “These ML-based weather forecasts first approached the skill of the 
IFS (used as the benchmark for high-quality forecasting), then matched IFS 
skill, and then claimed to surpass our scores. What’s more, making a forecast 
with these models requires only a single GPU, takes less than a minute, and 
consumes a tiny fraction of the energy required for an IFS forecast.”

2024-11-12

See model’s forecasts 
on ECMWF website

These models are free 
and can be downloaded



AI4Science - Context of the presentation
Physics-aware Deep Learning for Dynamical Systems
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 Applications domains - examples

Computational Fluid Dynamics Earth System Science - Climate

Graphical design

Tompson et al. 
2017 

Biology
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C1: Incorporating physical knowledge in 
statistical dynamics models – hybrid systems
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C1 -Incorporating physical knowledge
Why hybrid systems - motivation
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Accelerate computations
 Direct numerical simulation is

usually intractable
 Approximate the high-precision

simulation at a lower
computational cost

Complement physical models
 Part of the physics is unknown

or not considered in the model
 Learn the missing information 

from data

Low to high resolution (Belbute-Peres et 
al. 2020)

Neural General Circulation Model –
weather prediction (Kochkov et al. 2023)
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C1 - Incorporating physical knowledge
APHYNITY:  Augmenting Physical Models with Deep Networks for Complex 
Dynamics Forecasting (Yin et al. 2021, Donà et al. 2022)
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 Context
 Assumptions: incomplete background knowledge is available

 e.g. PDE that only explains partially the phenomenon

 Complement the physical model with a statistical component
 Learn the missing information from data

 Provide a principled framework to make model-based and data-based
frameworks cooperate

 Objective
 Identify the physical parameters (inverse problem)
 The NN component should learn to describe the information that cannot be

captured by the physics (direct problem)
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C1 - Incorporating physical knowledge
APHYNITY:  Augmenting Physical Models with Deep Networks for Complex 
Dynamics Forecasting (Yin et al. 2021, Donà et al. 2022)

 Illustration: damped pendulum
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C1 - Incorporating physical knowledge
APHYNITY:  Augmenting Physical Models with Deep Networks for Complex 
Dynamics Forecasting (Yin et al. 2021, Donà et al. 2022)

Physics-aware Deep Learning - Dynamical Systems - P. Gallinari14

 We consider
 General dynamics of the form ௗ௑೟

ௗ௧
ൌ 𝐹ሺ𝑋௧ሻ

 Assumption
 Evolution function 𝐹, will be modeled by a combination of:

 A physical – incomplete model 𝐹௣∈ ℱ௣
 An agnostic model (a neural network) 𝐹௔ ∈ ℱ௔

 Example:
 Additive decompositions


ௗ௑೟
ௗ௧

ൌ 𝐹 𝑋௧ ൌ 𝐹௣ 𝑋௧ ൅ 𝐹௔ሺ𝑋௧ሻ , with 𝐹௣ ∈ ℱ௣ and 𝐹௔ ∈ ℱ௔

 Ill-posed problem
 The decomposition 𝐹௣ 𝑋௧ ൅ 𝐹௔ሺ𝑋௧ሻ is usually not unique

 Turned into a well posed optimization problem
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C1 - Incorporating physical knowledge
APHYNITY:  Augmenting Physical Models with Deep Networks for Complex 
Dynamics Forecasting (Yin et al. 2021, Donà et al. 2022)

 Intuition
 𝐹௣ should explain as much of the dynamics as possible

 Learn 𝐹௔ and 𝐹௣ so that 𝐹௔ explains only the residual unexplained by 𝐹௣

 Formalization: training objective
 Given a normed vector space (ℱ, . ሻ

 𝑀𝑖𝑛ி೛∈ℱ೛,ிೌ ∈ℱೌ 𝐹௔ , s.t. ∀𝑋 ∈ 𝐷, ௗ௑೟
ௗ௧

ൌ 𝐹௣ 𝑋௧ ൅ 𝐹௔ሺ𝑋௧ሻ

 Theoretical insights
 If ℱ௣ is a proximinal set, there exists a minimizing decomposition.

 If ℱ௣ is a Chebyshev set, the optimization problem admits a unique 
minimizer, hence identifiability is guaranteed.
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C1 - Incorporating physical knowledge
APHYNITY:  Augmenting Physical Models with Deep Networks for Complex 
Dynamics Forecasting (Yin et al. 2021, Donà et al. 2022)
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Differentiable solver

Neural
Network

• The evolution function solution, combines a differentiable
numerical solver with a NN residual component

• The parameters of the solver and of the neural network are 
learned from data

• Solving amounts at integrating this evolution function in time



C1 - Incorporating physical knowledge
Cardiac electrophysiology (Kashtanova, Sermesant et al. 2022 - Epione team 
Inria Sophia)
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 Objective
 Modeling the dynamics of cardiac electrical activity

 Normal and pathological conditions

 Variable of interest: Action Potential (mVolts) wave propagation

Fig. Wikipedia
Fig. drawittoknowit.com
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C1 - Incorporating physical knowledge
Cardiac electrophysiology (Kashtanova et al. 2022)
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 Objective
 Modeling the dynamics of cardiac electrical activity

 Setting 1: In Silico Data
 Complex high fidelity model – considered as Ground Truth

 e.g. Ten Tusscher-Panvilov 2004
 # hidden variables and parameters, computationally expensive (43 variables)

 Surrogate low fidelity model – Incomplete phenomenological model
 e.g.  Mitchell Schaeffer 2003 – 6 parameters model
 In the experiments, 3 parameters to be estimated + 3 fixed
 Rapid prototyping, less precise - Reaction-diffusion model

 Objective
 Learn to simulate high fidelity data using a combination of low fidelity model 

(Mitchell Schaeffer) and residual neural network – APHYNITY framework

2024-11-12



C1 - Incorporating physical knowledge
Cardiac electrophysiology (Kashtanova et al. 2022)
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 In silico data - Example: polarization phase
 Slab of 2D cardiac tissue of 24x24 elements

 Ex-vivo data
 Optical data from swine hearts

2024-11-12



C2: Tackling the generalization problem
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C2: Tackling the generalization problem for dynamical systems
Motivating examples

One underlying process – Multiple environments

Modelling epidemics in different 
countries

Modeling heart electrical 
diffusion from different patients

Predictions of sea 
surface temperature 
from satellite data –
different areas
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Fig. Fresca 2020
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C2: Tackling the generalization problem for dynamical systems
Domain Generalization
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 Problem setting
 Assumption: there exists a set of environments 𝐸 ൌ ሼ𝑒௜ሽ, each governed

by a differential equation ௗ௫೟
೐

ௗ௧
ൌ 𝑓௘ 𝑥௧௘

 Sharing commonalities e.g. general form of the dynamics (shared parameters
𝜃௖)

 With specificities, e.g. coefficients of the PDE, initial & boundary conditions, 
forcings, spatio-temporal domains, etc (Specific parameters 𝜃௘)

 Challenge
 How to leverage this setting in order to generalize to unseen situations 

and new environments?

2024-11-12



C2: Tackling the generalization problem for dynamical systems
Domain Generalization
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 Usual practice in ML (Empirical Risk Minimization)
 Training dataset: sample environment distribution and for each

environmen sample the trajectory distribution
 Expect this will generalize to new environments
 This assumes:

 i.i.d. distribution, dataset large enough to cover the data distribution and 
represent the diversity of situations

 Not realistic

 Claim
 The models should leverage adaptive conditioning to the environment

2024-11-12



C2: Tackling the generalization problem for dynamical systems
Domain Generalization (Kassai et al. 2024)
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ERM baselines vs environment adaptive conditioning

Gray-Scott Burgers

ERM baselines
ERM baselines

Adaptive conditioning Adaptive conditioning

Foundation model



C2: Tackling the generalization problem for dynamical systems
CODA framework (Kirchmeyer et al. 2022, Kassai et al. 2024
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 How to – Intuition: Meta-learning for fast adaptation to new 
environments
 Training

 Learn on a sample of the domains’ distribution (i.e. different environments)
 𝜃௘ ൌ 𝜃௖ ൅ 𝛿𝜃௘

 𝜃௖ shared parameters across environments, 𝛿𝜃௘environment specific
parameters

 So that it could adapt fast and with a few shots to a new environment

 Inference: for a new environment fast adaptation with a few samples

2024-11-12



C2:Tackling the generalization problem for dynamical systems
CODA framework (Kirchmeyer et al. 2022)
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

• Four parameters, two fixed (𝛼, 𝛾) and two
(𝛽, 𝛿) change accross environments

• Training on 9 environments (yellow)
• Top: Evaluation on 2600 new 

environments
• Bottom: phase portraits for 4 new 

environments 𝒆𝟏to 𝒆𝟒
• Blue trajectories: ground truth
• Green trajectories: predicted2024-11-12



C3: Neural operators: beyond mesh based
approaches for simulation
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C3: Neural operators
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Classical numerical solvers
operate on grids or meshes

(finite differences, finite elements, 
finitie volumes)

Neural solvers operate on 
tensors (grids) or on graphs

(irregular meshes)

Neural operators is a recent
topic aiming at learning maps

between function spaces instead
of vector spaces

 e.g. images are considered as 
continuous functions

Key ideas
 Functions and operators are 

mesh/ resolution invariant
 They can be applied for different

geometries, for multiple 
resolutions

Learning operator methods are 
data driven



C3: Neural operator
Encode – Process – Decode framework
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Encode-Process-Decode has become the standard framework for 
many spatio-temporal forecasting problems

Decoder

Processor: time stepping
Unroll the dynamics in a latent space

௧ ௧ା୼௧

Encoder



C3: Neural operators
AROMA: Attentive Reduced Order Model with Attention (Serrano et al. 2024)
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 Principled Framework:
 Properties

 Handle diverse geometries: inputs and outputs may consist in point sets, grids, 
meshes

 Can be queried at any spatial position

 Demonstrates how modern NN components allow building versatile 
PDE solvers

 Encode/ Process/ Decode framework
 Encoding: cross-attention maps variable-size inputs to a fixed-size compact 

latent token space encoding local spatial information
 Processing: a diffusion transformer architecture to model dynamics and 

exploit spatial relations locally and globally via self-attention + model 
uncertainty

 Decoding: uses a conditional neural field + cross-attention to query 
forecast values at any spatial point within the equation's domain



C3: Neural operators
AROMA: Attentive Reduced Order Model with Attention (Serrano et al. 2024)
General framework
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

Cross-attention encoder: 𝑢௧ → 𝑍௧

• Encodes variable size discretized input 𝑢ሺሻ into a fixed size & small
dimensional sequence of latent embedding tokens 𝑍

• 𝑍 encodes local spatial information on problem geometry + variable 
values

Cross-attention

Encoder module



C3: Neural operators
AROMA: Attentive Reduced Order Model with Attention (Serrano et al. 2024)
General framework

2024-11-12Physics-aware Deep Learning - Dynamical Systems - P. Gallinari32



Time stepping transformer: 𝑍௧ → 𝑍௧ା୼௧

• Learns the dynamics in the small dimensional latent space
• Self attention models relations between spatial latent tokens
• Inference: dynamics is enrolled in the latent space starting from an 

initial condition– low complexity
• Diffusion: introduces a stochastic component

Self-attention

Processor



C3: Neural operators
AROMA: Attentive Reduced Order Model with Attention (Serrano et al. 2024)
General framework
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

Cross-attention neural fields decoder: 𝑍௧ା୼௧ → 𝑢௧ା୼௧

• Maps the latent representation 𝑍௧ା୼௧ to the original physical space
• Can be queried at any position 𝑥 of the physical space

Cross-attention

Decoder module



C3: Neural operators
AROMA: Attentive Reduced Order Model with Attention
Cross-attention encoder captures spatial attention
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Cylinder flow ground truth Tokens capture and encode local spatial 
information – cross attention between

𝑇௚௘௢ tokens and "𝑥"

Example: Navier Stokes – cylinder flow
Cross attention illustration



AROMA: Attentive Reduced Order Model with Attention
Stability on long rollouts
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Burgers equation
Trained to predict next step on 50 time steps

trajectories
Unrolled for 200 steps



AROMA: Attentive Reduced Order Model with Attention
Stability on long rollouts
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 Navier Stokes
Trained to predict next step on 20 time steps

trajectories
Unrolled at test for 40 steps

Ground truth

Ground truth

Prediction

Prediction



Conclusion
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 AI4Science
 Still an open field, with several challenges
 Already significant demonstrations in fields like weather forecasting, 

biology, materials, molecular design, …
 Crucial role of curated data collections
 Quest for foundation models

 Key issue
 Crucial role of pluridisciplinary teams and efforts
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